

    
      
          
            
  
OpenRSP

Welcome to the website of OpenRSP - a program library for the open-ended,
analytic calculation of molecular properties! Please choose a topic to learn
more about what OpenRSP is, who is involved it it, how you can use it or how
you can get involved.
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What is OpenRSP?

OpenRSP is a program library that uses recursive routines to identify and
assemble contributions to response properties - that is, molecular properties
as they are expressed in the theory called “response theory” from theoretical
chemistry.

The name of OpenRSP reflects the following features:


	It is a library for the Open-ended calculation of ReSPonse
properties: It can be used for the calculation of reponse properties to
arbitrary order.


	It is Open-source and is publicly available [https://github.com/openrsp/openrsp]  under the LGPL v2.1 license.


	It has an application programming interface that Opens it to connection
with other programs that wish to make use of its functionality.





What are response properties?

Response properties describe how fundamental properties of a molecular system
respond to external influences like subjection to an electromagnetic field or
displacement of the atomic nuclei.  They and related properties are essential
for the description of spectroscopic processes and molecular characteristics
like infrared spectroscopy, Raman scattering, multiphoton absorption and
vibrational energy levels. If you have ever done computational work on the
molecular level for phenomena in this category, chances are that response
properties were involved at some stage of the calculation.

Response properties can be categorized by their order, that is, the “number
of influences” that were taken into consideration for a given property. The
first such order is called linear response and contains much-used properties
like the electric dipole polarizability - i.e.  the first-order change to the
molecular dipole moment in the presence of an electric field - or the Hessian
matrix of nuclear geometric displacements - i.e. the change in the molecular
gradient that would result from displacing each coordinate of the molecular
geometry.

Higher orders of response properties describe the changes that the fundamental
molecular property would undergo upon subjection to more than one external
influence, or upon higher-order interactions with the same influence. Examples
of such properties are the geometric gradient of the electric dipole
polarizability - essential for the description of vibrational Raman spectra -
or the cubic and quartic force constants, i.e. the third- and fourth-order
derivatives of the molecular energy with respect to geometrical displacements -
which may be used to calculate corrections to a description of the vibrational
energy levels stemming from the geometric Hessian.




Why use OpenRSP?

By its recursive structure, OpenRSP makes it possible to calculate response
properties of arbitrary complexity in an analytical manner, not resorting to
numerical schemes like finite difference methods in the calculation. Compared
to analytical methods, numerical approaches may be associated with a greater
degree of uncertainty related to accuracy and practical feasibility of the
calculation, and we therefore think that analytical calculation should be used
whenever it is practical.

Today’s programs written for the calculation of response properties may either
not have a recursive structure, or may use numerical methods to different
extents, or both. In the cases where existing programs use an analytical
approach, they may either be not recursive (which typically means that a new
program routine must be written for each new property for which calculation is
desired), or they may only be usable for a limited category of properties.  As
the complexity of the expressions that must be evaluated in an analytical
approach to yield the desired response property increases rapidly with the
order of response, such analytic calculation of high-order response properties
can quickly become a very complicated task and the implementation of ad hoc
program routines for their calculation may be intractable at higher orders.

The structure of OpenRSP, using recursion as a core tool, solves the task of
identifying and assembling contributions to response properties “once and for
all”.  When combined with program libraries that can provide the contributions
that OpenRSP identifies, any response property can be calculated fully
analytically as long as those libraries can provide the necessary
contributions. We note, however, that the present version of the code is still
awaiting the completion of functionality to handle perturbations that both
change the basis set and have a nonzero frequency associated with them, but
that such extension is within the scope of the present underlying theory.







          

      

      

    

  

    
      
          
            
  
Authors

This table lists the main developers of OpenRSP and their current affiliation:


OpenRSP authors (alphabetical order of surname)





	Name

	Affiliation





	Radovan Bast

	UiT The Arctic University of Norway



	Daniel H. Friese

	


	Bin Gao

	UiT The Arctic University of Norway



	Dan J. Jonsson

	UiT The Arctic University of Norway



	Magnus Ringholm

	UiT The Arctic University of Norway



	Simen S. Reine

	University of Oslo



	Kenneth Ruud

	UiT The Arctic University of Norway






Requests or comments should primarily be directed to authors listed in boldface whose e-mail
addresses are all in the format firstname.lastname@uit.no.





          

      

      

    

  

    
      
          
            
  
Citation guide

All published results obtained with OpenRSP are expected to cite the following
references:


	Andreas J. Thorvaldsen, Kenneth Ruud, Kasper Kristensen, Poul Jørgensen and Sonia Coriani, J. Chem. Phys. 129, 214108 (2008).


	Magnus Ringholm, Dan Jonsson and Kenneth Ruud, J. Comput. Chem. 35, 622-633 (2014).




Please also cite the code itself (if you are not using the latest version, please replace “1.0.0”
and the DOI by the corresponding version and DOI which you can find at https://zenodo.org/record/1491928):


	Radovan Bast, Daniel H. Friese, Bin Gao, Dan J. Jonsson, Magnus Ringholm,
Simen S. Reine, Kenneth Ruud, OpenRSP: open-ended response theory (version
1.0.0), Zenodo, https://doi.org/10.5281/zenodo.1491927.




If the use of OpenRSP involved the calculation of single residues of response
properties, citation of the following reference is expected in addition to the
references listed above:


	Daniel H. Friese, Maarten T. P. Beerepoot, Magnus Ringholm and Kenneth Ruud, J. Chem. Theory Comput. 11, 1129-1144 (2015).




Please also note that host programs into which OpenRSP is incorporated may have
their own citation guidelines or requirements to be observed if such programs
are used.





          

      

      

    

  

    
      
          
            
  
History of the project


The OpenRSP core functionality

Work on the OpenRSP project began in the mid-2000’s when the first work started
on what has become the present version of the program. During this time, the
theoretical foundation of response theory on which OpenRSP was based was
developed and used to create program routines that were connected to the Dalton
quantum chemistry program. This version of the code was used to compute several
response properties for which analytic calculation had not been carried out
before.

In 2008, we have generalized OpenRSP for the DIRAC program package which
enabled us to access a wealth of response properties at the 4-component
relativistic level.

In 2011, work was started on a version - then still a part of Dalton - where
recursion was used to achieve an open-ended implementation of the theory, so
that one set of routines could be used to manage the calculation of any
response property. This version forms the basis of the present-day core
functionality of the OpenRSP, but was since developed further to include
features such as calculation of single residues of response properties (of use
in the calculation of multiphoton strengths), calculation of multiple
properties in one invocation with reuse of common intermediate results, and
restructuring of calls to external routines to reduce recalculation of various
contributions such as perturbed one- and two-electron integrals.




OpenRSP as a modular library with an API

In order to make OpenRSP into a modular library that was not tied to any one
particular quantum chemistry program - or host program - work began in 2013
on developing an application programming interface (API) for OpenRSP, involving
the creation of clearly defined interfaces between OpenRSP and other codes, the
use of callback routines in order to abstract the way in which the OpenRSP core
asks for contributions from external libraries, and the development of the
QcMatrix library to abstract and mediate matrix operations so that OpenRSP is
agnostic to the underlying implementation of such operations. The first host
program to make use of this modular functionality is the
LSDalton <http://daltonprogram.org/>`_ quantum chemistry program.




Libraries for external contributions

During the course of its execution, OpenRSP identifies various contributions
that it must get from libraries external to it in order to be able to assemble
the response property or properties to be calculated, such as perturbed one-
and two-electron integral contributions, exchange-correlation contributions if
a density-functional theory calculation is requested, or solution of so-called
response equations. Therefore, the development of libraries that can provide
such functionality at a sufficient level of generality - although not
necessarily driven by the demands of OpenRSP - has nevertheless been an
important concurrent task, and has resulted in the creation of sophisticated
software without which OpenRSP would not be able to do what it does best. Some
of the libraries that are presently used or have been used by OpenRSP are
listed below:


	Gen1Int for the calculation of perturbed one-electron integrals


	cgto-diff-eri for the calculation of perturbed two-electron integrals


	HODI for the calculation of perturbed integrals


	XCint [https://github.com/dftlibs/xcint/] and
XCFun [https://github.com/dftlibs/xcfun/]
for the calculation of exchange-correlation contributions


	A linear response equation solver by Sonia Coriani et al.


	FraME for a polarizable embedding description of molecular surroundings


	PCMSolver for a polarizable continuum description of molecular surroundings










          

      

      

    

  

    
      
          
            
  
Version history and changelog


Version 1.0.0 (2020-06-30)


Code


	Now requires Fortran 2008


	Rewrote linked list functionality for caching to instead use (reallocating) arrays


	“Number of components” marker in rsp_tensor output file now written as ‘NUM_COMPONENTS’ instead of ‘NUM COMPONENTS’


	Significantly decreased usage of array constructors in function/subroutine arguments


	Fixed various memory leak/out-of-bounds errors that sometimes would happen


	OpenRSP now looks for available file units before choosing one to use


	Disabled internal memory limit and memory bookkeeping, may be reinstated later


	If a response tensor is large, then if it’s printed at the debugging print level, it’s broken down into smaller chunks


	Added stops for various currently unsupported residue calculation setups


	Fixed a bug concerning testing of perturbation frequencies against excitation energy for residue calculations


	Removed some unused residue-related routines


	Calculation setup errors encountered in wrapper routines now cause exit, not just warning and then continuing







Project


	Added contribution guide and authorship process guide


	Updated pull request template to solicit agreement to contribution terms


	Various changes to documentation







Known issues


	Now compiles and runs with most compilers but still problems with some Intel/2018 and Intel/2019 setups


	The “excitation” perturbation in a single residue calculation is now given
the label EX1 in the rsp_tensor file; however, its current implementation
still results in triplication of the calculation result data due to being
treated as having three components when in fact it has got only one


	Does not yet support calculations involving perturbations that are both non-static and change the basis set
(the foremost example of such a perturbation is the magnetic dipole perturbation with London atomic orbitals).









Version 1.0.0-alpha (2018-11-19)


New


	Implemented application programming interface and corresponding developer
manual using literate programming


	Adopted new file format for printing of final results


	Added support for caching of intermediate contributions and restarting an interrupted calculation


	Implemented recurse-calculate-recurse approach for most contributions


	Added support for passing several (pairs of) arguments for contraction with
perturbed contributions depending to first (second) order on the
perturbed/unperturbed density matrix, implemented a similar scheme for Pulay
and Lagrange-type contributions


	Added support for calculation of several properties in one run with reuse of common intermediate results


	Added support for calculation of single residues of electric dipole polarization properties


	Started using callback function scheme for external contributions and added
application programming interface: Callback functions now fulfill the role
previously played by interface files (2015-02-09)


	General response code added (2012-03-19)


	Repository initialized (2010-05-23)







Changed


	This is the first changelog entry, so no changes to be mentioned here.












          

      

      

    

  

    
      
          
            
  
Programs where OpenRSP is used

The following programs feature or have featured OpenRSP in some version:

Dalton [http://daltonprogram.org/] has featured OpenRSP in a private version
at an earlier stage of development, but that version of OpenRSP is now
outdated.

LSDalton [http://daltonprogram.org/] will soon feature a new and public
version of OpenRSP that is in active development.





          

      

      

    

  

    
      
          
            
  
Papers involving OpenRSP

This is a list of scientific articles where OpenRSP is involved in some
capacity, either pertaining to theoretical development related to the core
functionality or related functionality, or as having been applied to produce
computational results.


2020


	Olsen2020

	Dalton Project: A Python platform for molecular- and electronic-structure simulations
of complex systems, Olsen, J. Magnus O.; Reine, Simen; et al. J. Chem. Phys. 152, 214115 (2020)








2018


	Morgan2018

	Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the
Equilibrium Structure and Molecular Force Field of Formaldehyde,
Morgan, W. James; Matthews, Devin A.; Ringholm, Magnus; et al.
J. Chem. Theory Comput. 14 (3), 1333 (2018)








2017


	DiRemigio2017

	Open-ended formulation of self-consistent field response theory with the polarizable
continuum model for solvation
Di Remigio, Roberto; Beerepoot, Maarten T. P.; Cornaton, Yann; et al.
PCCP 19 (1), 366 (2017)



	Anelli2017

	Gauge-origin independent calculations of electric-field-induced second-harmonic generation
circular intensity difference using London atomic orbitals
Anelli, Marco; Ringholm, Magnus; Ruud, Kenneth
Mol. Phys. 115 (1-2), 241 (2017)








2016


	Steindal2016

	Open-ended response theory with polarizable embedding: multiphoton absorption in
biomolecular systems
Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T. P.; Ringholm, Magnus; et al.
PCCP 18 (40), 28339 (2016)



	Cornaton2016-2

	Complete analytic anharmonic hyper-Raman scattering spectra
Cornaton, Yann; Ringholm, Magnus; Ruud, Kenneth
PCCP 18 (32), 22331 (2016)



	Cornaton2016

	Analytic calculations of anharmonic infrared and Raman vibrational spectra
Cornaton, Yann; Ringholm, Magnus; Louant, Orian; et al.
PCCP 18 (5) 4201 (2016)








2015


	Friese2015-2

	Open-Ended Recursive Calculation of Single Residues of Response Functions for
Perturbation-Dependent Basis Sets
Friese, Daniel H.; Ringholm, Magnus; Gao, Bin; et al.
J. Chem. Theory Comput. 11 (10), 4814 (2015)



	Friese2015

	Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption
Matrix Elements
Friese, Daniel H.; Beerepoot, Maarten T. P.; Ringholm, Magnus; et al.
J. Chem. Theory Comput. 11 (3), 1129 (2015)








2014


	Ringholm2014-3

	Analytic calculations of hyper-Raman spectra from density functional theory
hyperpolarizability gradients
Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; et al.
J. Chem. Phys. 141 (13), 134107 (2014)



	Ringholm2014-2

	Analytic cubic and quartic force fields using density-functional theory
Ringholm, Magnus; Jonsson, Dan; Bast, Radovan; et al.
J. Chem. Phys. 140 (3), 034103 (2014)



	Gao2014

	Analytic Density Functional Theory Calculations of Pure Vibrational Hyperpolarizabilities:
The First Dipole Hyperpolarizability of Retinal and Related Molecules
Gao, Bin; Ringholm, Magnus; Bast, Radovan; et al.
J. Phys. Chem. A 118 (4), 748 (2014)



	Ringholm2014

	A General, Recursive, and Open-Ended Response Code
Ringholm, Magnus; Jonsson, Dan; Ruud, Kenneth
J. Comput. Chem. 35 (8), 622 (2014)








2008


	Thorvaldsen2008

	A density matrix-based quasienergy formulation of the Kohn–Sham density
functional response theory using perturbation- and time-dependent basis sets
Thorvaldsen, Andreas J.; Ruud, Kenneth; Kristensen, Kasper; et al.
J. Chem. Phys. 129 (21), 214108 (2008)











          

      

      

    

  

    
      
          
            
  
Theoretical background

We are working on a documentation of the OpenRSP core routines and its
application programming interface (API), and this, together with a introduction
of the underlying theory of OpenRSP intended to be accessible, will be made
available on this website once ready.

In the meantime, for a technical explanation of the theoretical background of
OpenRSP, the following references may prove informative:

The paper describing the version of response theory upon which OpenRSP is
based.


	Andreas J. Thorvaldsen, Kenneth Ruud, Kasper Kristensen, Poul Jørgensen and
Sonia Coriani, J. Chem. Phys. 129, 214108 (2008)




Describes a recursive algorithmic approach for the calculation of response
properties:


	Magnus Ringholm, Dan Jonsson and Kenneth Ruud, J. Comput. Chem. 35,
622-633 (2014)




Describes a recursive algorithmic approach for the calculation of single
residues of response functions that can be used to obtain multiphoton
absorption matrix elements:


	Daniel H. Friese, Maarten T. P. Beerepoot, Magnus Ringholm and Kenneth Ruud,
J. Chem. Theory Comput. 11, 1129-1144 (2015)




Describes a recursive algorithmic approach for the calculation of single
residues of response functions that contain perturbations which affect the
basis set (please note that this functionality is not yet implemented in the
latest version of OpenRSP):


	Daniel H. Friese, Magnus Ringholm, Bin Gao and Kenneth Ruud, J. Chem. Theory
Comput. 11 (10), 4814 (2015)








          

      

      

    

  

    
      
          
            
  
Limitations or Known Problems


	“T matrix contributions” - i.e. contributions from the perturbed
“half-time-differentiated” overlap matrix - are not yet supported.
These contributions are only nonzero for
perturbations that both a) affect the basis set and b) have frequencies other
than zero. The most relevant such kind of perturbation is the magnetic dipole
perturbations using London atomic orbitals. Properties consisting of only
other kinds of perturbations - such as geometric displacement of the nuclei
or electric dipole perturbations - are unaffected by the lack of T matrix
contributions.


	Currently we use QcPertInt (defined as QInt type in
include/RSPPerturbation.h, and src/fortran/RSPPertBasicTypes.F90 for
Fortran APIs) to reprenset several perturbation labels (see
OpenRSP Notations and Conventions), in which one label is described
by OPENRSP_PERT_LABEL_BIT bits (that can be modified during the step
ccmake, see Compile OpenRP).

For the time being, we do not suggest that users change the type of
QcPertInt, because other integer types are not supported by OpenRSP yet.



	The current implementation for calculation of residues of response functions
is significantly limited in generality. Currently, only electric dipole perturbations
and single residues are possible; furthermore, there are significant limitations for
the calculation setup. These limitations are described in further detail in the manual
of LSDalton in its (at the time of writing unreleased) 2020 version.








          

      

      

    

  

    
      
          
            
  
Get and run OpenRSP

If you want to get OpenRSP and use it for calculations, then please make note
of the following: OpenRSP is a program library that manages the calculation of
response properties, and it cannot calculate these properties without
getting contributions like perturbed one- and two-electron integrals or
solutions of response equations from other codes to which it connects through
the application programming interface (API). This means that if you download
and build OpenRSP from its GitHub repository [https://github.com/openrsp/openrsp],
the compiled product will not on its own be able to calculate response
properties. A set of API connections to enable OpenRSP to manage response
property calculations can for example be made in quantum chemistry programs the
where necessary routines for these contributions are implemented.

Consequently, in order to use OpenRSP for calculations, it is necessary to use
it in a host program into which OpenRSP has been incorporated in this way,
and a list of such programs is kept at the Programs where OpenRSP is used
page. The specific way in which OpenRSP is invoked in a host program - i.e. the
way that you can make OpenRSP calculate something in that program - is a
feature of each such program, and you must therefore follow the relevant
instructions to achieve this, as may for example be shown in the user manual
for the host program that you want to use.





          

      

      

    

  

    
      
          
            
  
Add OpenRSP to a quantum chemistry program

If you want to add OpenRSP to a quantum chemistry program, then you are free to
do so provided that you do not violate OpenRSP’s LGPL v2.1 software license as
described on OpenRSP’s GitHub repository [https://github.com/openrsp/openrsp].

In order to enable OpenRSP to work as intended, you must provide routines that
connect to the OpenRSP application programming interface (API) to give OpenRSP
access to contributions such as perturbed one- and two electron integrals,
exchange-correlation contributions if calculations at the density-functional
theory (DFT) level is desired, or solution routines for response equations.

Please note that OpenRSP is a program library that manages the calculation of
response properties, and it cannot carry out actual such calculations
without getting contributions like the ones mentioned here from program
routines that are external to OpenRSP.


Compile OpenRP

Before compiling OpenRSP, you need to make sure the following programs are
installed on your computer:


	Git,


	CMake (\(\ge2.8\)),


	C, C++ (if C++ APIs built) and/or Fortran 2003 (if Fortran APIs built) compilers,


	HDF 5 (\(\ge1.8\)) if it is enabled in QcMatrix library,


	BLAS and LAPACK libraries, and


	QcMatrix library [https://gitlab.com/bingao/qcmatrix].




For the time being, only CMake can be used to compile OpenRSP. In general,
OpenRSP should be compiled together with the host programs. See for example the
LSDalton program.

You can also compile OpenRSP alone to be familiar with how it works. But no
real calculations will be performed, all the callback functions in the OpenRSP
unit testing only return pre-defined data or read data from file. Let us
assume that you want to compile the library in directory build, you could
invoke the following commands:

mkdir build
cd build
ccmake ..
make





During the step ccmake, you need to set some parameters appropriately for
the compilation. For instance, if you enable OPENRSP_TEST_EXECUTABLE, some
executables for the test suite will be built and can run after compilation. So
that you are able to check if OpenRSP has been successfully compiled. A
detailed list of the parameters controlling the compilation is given in the
following table:


OpenRSP CMake parameters






	CMake parameters

	Description

	Default





	OPENRSP_BUILD_WEB

	Build OpenRSP from WEB files (only useful for developers)

	OFF



	OPENRSP_FORTRAN_API

	Build Fortran 2003 API

	OFF



	OPENRSP_PERT_LABEL_BIT

	Number of bits for a perturbation label (used for perturbation free scheme)

	10



	OPENRSP_TEST_EXECUTABLE

	Build test suite as excutables (otherwise, as functions in the library)

	ON



	OPENRSP_USER_CONTEXT

	Enable user context in callback functions

	OFF



	OPENRSP_ZERO_BASED

	Zero-based numbering

	ON



	QCMATRIX_HEADER_DIR

	Directory of header files of QcMatrix library

	None



	QCMATRIX_LIB

	Name of QcMatrix library with absolute path

	None



	QCMATRIX_MODULE_DIR

	Directory of Fortran modules of QcMatrix library

	None









OpenRSP Notations and Conventions

The following notations and conventions will be used through the OpenRSP
program and the documentation:


	Perturbation

	is described by a label, a complex frequency and its order. Any two
perturbations are different if they have different labels, and/or
frequencies, and/or orders.



	Perturbation label

	An integer distinguishing one perturbation from others; all different
perturbation labels involved in the calculations should be given by calling
the application programming interface (API)
OpenRSPSetPerturbations(); OpenRSP will stop if there is any
unspecified perturbation label given afterwards when calling the APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue().



	Perturbation order

	Each perturbation can acting on molecules once or many times, that is the
order of the perturbation.



	Perturbation components and their ranks

	Each perturbation may have different numbers of components for their
different orders, the position of each component is called its rank.

For instance, there will usually be \(x,y,z\) components for the electric
dipole perturbation, and their ranks are {0,1,2} in zero-based numbering,
or {1,2,3} in one-based numbering.

The numbers of different components of perturbations and their ranks are
totally decided by the host program. OpenRSP will get such information from
callback functions, that is OpenRSP itself is a perturbation free library.

NOTE: the above perturbtion free scheme is however not implemented for
the current release so that OpenRSP will use its own internal representations
for different perturbations.



	Perturbation tuple

	An ordered list of perturbation labels, and in which we further require that
identical perturbation labels should be consecutive. That means the tuple
\((a,b,b,c)\) is allowed, but \((a,b,c,b)\) is illegal because the
identical labels \(b\) are not consecutive.

As a tuple:


	Multiple instances of the same labels are allowed so that
\((a,b,b,c)\ne(a,b,c)\), and


	The perturbation labels are ordered so that \((a,b,c)\ne(a,c,b)\)
(because their corresponding response functions or residues are in
different shapes).




We will sometimes use an abbreviated form of perturbation tuple as, for
instance \(abc\equiv(a,b,c)\).

Obviously, a perturbation tuple \(+\) its corresponding complex
frequencies for each perturbation label can be viewed as a set of
perturbations, in which the number of times a label (with the same frequency)
appears is the order of the corresponding perturbation.



	Category of perturbation frequencies

	We use different integers for distinguishing different values of frequencies
within a frequency configuration. The category arrary is determined by:


	For each frequency configuration, we start at the first perturbation and
let its frequency value be designated number 1, then


	For the next perturbation,


	If its frequency value corresponds to a frequency value encountered
previously in this frequency, then use the same designation as for that
previously encountered frequency value, or


	If its frequency value has not been encountered before, then let that
frequency value be designated with the first unused number;






	Continue like this until the end of the perturbation tuple;


	Start the numbering over again at the next frequency configuration.






	Canonical order

	
	In OpenRSP, all perturbation tuples are canonically orderd according
to the argument pert_tuple in the API OpenRSPGetRSPFun()
or OpenRSPGetResidue(). For instance, when a perturbation
tuple \((a,b,c)\) given as pert_tuple in the API
OpenRSPGetRSPFun(), OpenRSP will use such order (\(a>b>c\))
to arrange all perturbation tuples inside and sent to the callback functions.


	Moreover, a collection of several perturbation tuples will also follow
the canonical order. For instance, a collection of all possible perturbation
tuples of labels \(a,b,c,d\) are
\((0,a,b,ab,c,ac,bc,abc,d,ad,bd,abd,cd,acd,bcd,abcd)\), where
\(0\) means unperturbed quantities that is always the first one
in the collection.

The rules for generating the above collection are:


	When taking a new perturbation into consideration, always do so in
alphabetical order (and begin with the empty set);


	When taking a new perturbation into consideration, the new subsets are
created by making the union of all previous subsets (including the
empty set) and the new perturbation (putting the new perturbation
at the end).










	Perturbation \(a\)

	The first perturbation label in the tuple sent to OpenRSP APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue(), are the
perturbation \(a\) [Thorvaldsen2008].



	Perturbation addressing

	
	The addressing of perturbation labels in a tuple is decided by
(i) the argument pert_tuple sent to the API OpenRSPGetRSPFun()
or OpenRSPGetResidue(), and (ii) the canonical order that
OpenRSP uses.


	The addressing of components per perturbation (several consecutive
identical labels with the same complex frequency) are decided by
the host program (NOTE: as mentioned above, the perturbtion free
scheme is not implemented for the current release so that OpenRSP will use
its own internal subroutines to compute the address of components per
perturbation).


	The addressing of a collection of perturbation tuples follows the
canonical order as aforementioned.




Therefore, the shape of response functions or residues is mostly
decided by the host program. Take \(\mathcal{E}^{abbc}\) as an
example, its shape is \((N_{a},N_{bb},N_{c})\), where \(N_{a}\)
and \(N_{c}\) are respectively the numbers of components of
the first order of the perturbations \(a\) and \(c\), and
\(N_{bb}\) is the number of components of the second order of
the perturbation \(b\), and


	In OpenRSP, we will use notation [a][bb][c] for \(\mathcal{E}^{abbc}\),
where the leftmost index (a) runs slowest in memory and the
rightmost index (c) runs fastest. However, one should be
aware that the results are still in a one-dimensional array.


	If there two different frequencies for the perturbation \(b\),
OpenRSP will return [a][b1][b2][c], where b1 and b2
stand for the components of the first order of the perturbation
\(b\).


	The notation for a collection of perturbation tuples (still in a
one-dimensional array) is {1,[a],[b],[a][b],[c],[a][c],[b][c],[a][b][c]}
for \((0,a,b,ab,c,ac,bc,abc)\), where as aforementioned the
first one is the unperturbed quantities.











API Reference

In order to use OpenRSP, C users should first include the header file
of OpenRSP in their codes:

#inclde "OpenRSP.h"





while Fortran users should use the OpenRSP module:

use OpenRSP_f





In this chapter, we will describe all the functions defined in OpenRSP
API for users. These functions should be invoked as:

ierr = OpenRSP...(...)





where ierr contains the error information. Users should check if
it equals to QSUCCESS (constant defined in
QcMatrix library [https://gitlab.com/bingao/qcmatrix]). If not, there
was error happened in the invoked function, and the calculations should
stop.


Functions of OpenRSP API (C version)


	
QErrorCode OpenRSPCreate(open_rsp, num_atoms)

	Creates the context of response theory calculations, should be called at first.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP* (struct*)



	Parameters

	
	num_atoms (const QInt) – number of atoms (to be removed after perturbation free scheme implemented)






	Return type

	QErrorCode (error information)










	
QErrorCode OpenRSPSetLinearRSPSolver(open_rsp, user_ctx, get_linear_rsp_solution)

	Sets the context of linear response equation solver.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	user_ctx (void*) – user-defined callback function context


	get_linear_rsp_solution (const GetLinearRSPSolution (function
pointer void (*)(...))) – user-specified callback function of linear
response equation solver, see the callback function
get_linear_rsp_solution()






	Return type

	QErrorCode










	
QErrorCode OpenRSPSetPerturbations(open_rsp, num_pert_lab, pert_labels, pert_max_orders, pert_num_comps, user_ctx, get_pert_concatenation)

	Sets all perturbations involved in response theory calculations.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels involved
in calculations


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	pert_num_comps (const QInt*) – number of components of a perturbation described by
exactly one of the above different labels, up to the allowed maximal
order, size is therefore the sum of pert_max_orders


	user_ctx (void*) – user-defined callback function context


	get_pert_concatenation (const GetPertCat (function pointer void (*)(...))) – user specified function for getting the ranks
of components of sub-perturbation tuples (with the same perturbation
label) for given components of the corresponding concatenated
perturbation tuple






	Return type

	QErrorCode









NOTE: get_pert_concatenation() will not be invoked in the current
release; OpenRSP will use it after the perturbation free scheme implmented.


	
QErrorCode OpenRSPSetOverlap(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_overlap_mat, get_overlap_exp)

	Sets the overlap operator.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the overlap operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_overlap_mat (const GetOverlapMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of overlap operator as well as its derivatives with
respect to different perturbations, see the callback function
get_overlap_mat()


	get_overlap_exp (const GetOverlapExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of overlap operator as well as its derivatives with
respect to different perturbations, see the callback function
get_overlap_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddOneOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_one_oper_mat, get_one_oper_exp)

	Adds a one-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the one-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_one_oper_mat (const GetOneOperMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of one-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_one_oper_mat()


	get_one_oper_exp (const GetOneOperExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of one-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_one_oper_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddTwoOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_two_oper_mat, get_two_oper_exp)

	Adds a two-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the two-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_two_oper_mat (const GetTwoOperMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of two-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_two_oper_mat()


	get_two_oper_exp (const GetTwoOperExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of two-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_two_oper_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddXCFun(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_xc_fun_mat, get_xc_fun_exp)

	Adds an exchange-correlation (XC) functional to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the XC functional


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_xc_fun_mat (const GetXCFunMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of XC functional as well as its derivatives with
respect to different perturbations, see the callback function
get_xc_fun_mat()


	get_xc_fun_exp (const GetXCFunExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of XC functional as well as its derivatives with
respect to different perturbations, see the callback function
get_xc_fun_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddZeroOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_zero_oper_contrib)

	Adds a zero-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the zero-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_zero_oper_contrib (const GetZeroOperContrib (function pointer void (*)(...))) – user-specified function to calculate
contributions from the zero-electron operator, see the callback function
get_zero_oper_contrib()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAssemble(open_rsp)

	Assembles the context of response theory calculations and checks its validity,
should be called before any function OpenRSPGet...(), otherwise the results
might be incorrect.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Return type

	QErrorCode










	
QErrorCode OpenRSPWrite(open_rsp, fp_rsp)

	Writes the context of response theory calculations.


	Parameters

	
	open_rsp (const OpenRSP*) – context of response theory calculations


	fp_rsp (FILE*) – file pointer






	Return type

	QErrorCode










	
QErrorCode OpenRSPGetRSPFun(open_rsp, ref_ham, ref_state, ref_overlap, num_props, len_tuple, pert_tuple, num_freq_configs, pert_freqs, kn_rules, r_flag, write_threshold, size_rsp_funs, rsp_funs)

	Gets the response functions for given perturbations.


	Parameters

	
	open_rsp (OpenRSP*) – context of response theory calculations


	ref_ham (const QcMat*) – Hamiltonian of referenced state


	ref_state (const QcMat*) – electronic state of referenced state


	ref_overlap (const QcMat*) – overlap integral matrix of referenced state


	num_props (const QInt) – number of properties to calculate


	len_tuple (const QInt*) – length of perturbation tuple for each property,
size is the number of properties (num_props)


	pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first
label of each property is the perturbation \(a\)


	num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props


	pert_freqs (const QReal*) – complex frequencies of each perturbation label (except
for the perturbation \(a\)) over all frequency configurations, size is
2 \(\times\)
(dot_product(len_tuple,num_freq_configs)-sum(num_freq_configs)), and
arranged as [num_freq_configs[i]][len_tuple[i]-1][2] (i runs from
0 to num_props-1) and the real and imaginary parts of each frequency
are consecutive in memory


	kn_rules (const QInt*) – number \(k\) for the \((k,n)\) rule 1 for each
property (OpenRSP will determine the number \(n\)), size is the
number of properties (num_props)


	r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not
load/use any existing restarting data and do not save any new restarting
data”, and 3 means “use any existing restarting data and extend existing
restarting data with all new restarting data”


	write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP


	size_rsp_funs (const QInt) – size of the response functions, equals to the sum of
the size of each property to calculate—which is the product of the
size of added perturbations (specified by the perturbation tuple
pert_tuple) and the number of frequency configurations
num_freq_configs for each property






	Var rsp_funs

	the response functions, size is 2 \(\times\)
size_rsp_funs and arranged as
[num_props][num_freq_configs][pert_tuple][2],
where the real and imaginary parts of the response functions
are consecutive in memory



	Vartype rsp_funs

	QReal*



	Return type

	QErrorCode










	1

	The description of the \((k,n)\) rule can be found, for instance,
in [Ringholm2014].






	
QErrorCode OpenRSPGetResidue(open_rsp, ref_ham, ref_state, ref_overlap, order_residue, num_excit, excit_energy, eigen_vector, num_props, len_tuple, pert_tuple, residue_num_pert, residue_idx_pert, num_freq_configs, pert_freqs, kn_rules, r_flag, write_threshold, size_residues, residues)

	Gets the residues for given perturbations.


	Parameters

	
	open_rsp (OpenRSP*) – context of response theory calculations


	ref_ham (const QcMat*) – Hamiltonian of referenced state


	ref_state (const QcMat*) – electronic state of referenced state


	ref_overlap (const QcMat*) – overlap integral matrix of referenced state


	order_residue (const QInt) – order of residues, that is also the length of
each excitation tuple


	num_excit (const QInt) – number of excitation tuples that will be used for
residue calculations


	excit_energy (const QReal*) – excitation energies of all tuples, size is
order_residue \(\times\) num_excit, and arranged
as [num_excit][order_residue]; that is, there will be
order_residue frequencies of perturbation labels (or sums
of frequencies of perturbation labels) respectively equal to
the order_residue excitation energies per tuple
excit_energy[i][:] (i runs from 0 to num_excit-1)


	eigen_vector (QcMat*[]) – eigenvectors (obtained from the generalized
eigenvalue problem) of all excitation tuples, size is order_residue
\(\times\) num_excit, and also arranged in memory
as [num_excit][order_residue] so that each eigenvector has
its corresponding excitation energy in excit_energy


	num_props (const QInt) – number of properties to calculate


	len_tuple (const QInt*) – length of perturbation tuple for each property,
size is the number of properties (num_props)


	pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first
label of each property is the perturbation \(a\)


	residue_num_pert (const QInt*) – for each property and each excitation energy
in the tuple, the number of perturbation labels whose sum of
frequencies equals to that excitation energy, size is order_residue
\(\times\) num_props, and arragned as [num_props][order_residue];
a negative residue_num_pert[i][j] (i runs from 0 to
num_props-1) means that the sum of frequencies of perturbation
labels equals to -excit_energy[:][j]


	residue_idx_pert (const QInt*) – for each property and each excitation energy
in the tuple, the indices of perturbation labels whose sum of
frequencies equals to that excitation energy, size is
sum(residue_num_pert), and arranged as [residue_num_pert]


	num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props


	pert_freqs (const QReal*) – complex frequencies of each perturbation label (except
for the perturbation \(a\)) over all frequency configurations and
excitation tuples, size is 2 \(\times\)
(dot_product(len_tuple,num_freq_configs)-sum(num_freq_configs))
\(\times\) num_excit, and arranged as
[num_excit][num_freq_configs[i]][len_tuple[i]-1][2] (i runs from
0 to num_props-1) and the real and imaginary parts of each
frequency are consecutive in memory; notice that the (sums of)
frequencies of perturbation labels specified by residue_idx_pert
should equal to the corresponding excitation energies for all frequency
configurations and excitation tuples


	kn_rules (const QInt*) – number \(k\) for the \((k,n)\) rule for each property
(OpenRSP will determine the number \(n\)), size is the number of
properties (num_props)


	r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not
load/use any existing restarting data and do not save any new restarting
data”, and 3 means “use any existing restarting data and extend existing
restarting data with all new restarting data”


	write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP


	size_residues (const QInt) – size of the residues, equals to the sum of the
size of each property to calculate—which is the product of the
size of added perturbations (specified by the perturbation tuple
pert_tuple), the number of excitation tuples (num_excit)
and the number of frequency configurations num_freq_configs
for each property






	Var residues

	the residues, size is 2 \(\times\)
size_residues and arranged as
[num_props][num_excit][num_freq_configs][pert_tuple][2], where
the real and imaginary parts of the residues are consecutive in memory



	Vartype residues

	QReal*



	Return type

	QErrorCode










	
QErrorCode OpenRSPDestroy(open_rsp)

	Destroys the context of response theory calculations, should be called at the end.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Return type

	QErrorCode












Functions of OpenRSP API (Fortran version)

Functions of OpenRSP API (Fortran) are similar to those of the C version, except
that an extra _f should be appended to each function. Other differences are
the (ii) argument types and (iii) callback functions (subroutines for Fortran).
The latter will be described in Chapter Callback Function Scheme. The
former relates to the convention of types in Fortran, please refer to the manual
of QcMatrix library [https://gitlab.com/bingao/qcmatrix] and the following
table for the convention:







	Type in OpenRSP

	Fortran





	struct OpenRSP

	type(OpenRSP)



	void* user_ctx

	type(C_PTR) user_ctx



	callback functions

	external subroutines






We also want to mention that users can also pass their own defined Fortran type
as the user-defined callback function context to OpenRSP, by encapsulated into
the type(C_PTR) user_ctx.






Callback Function Scheme

To use OpenRSP, users should also prepare different callback functions
needed by OpenRSP. These callback functions will be invoked by OpenRSP
during calculations to get integral matrices or expectation values of
different one- and two-electron operators, exchange-correlation functionals
and nuclear contributions, or to solve the linear response equation.
The callback functions are slightly different for C and Fortran users,
which will be described separately in this chapter.

It should be noted that the arguments in the following callback functions are
over complete. For instance, from the knowledge of perturbations
(oper_num_pert, oper_pert_labels and oper_pert_orders), the
dimension of integral matrices num_int in the callback function
get_one_oper_mat() can be computed.

Last but not least, users should be aware that:


	OpenRSP always ask for complex expectation values for different one-
and two-electron operators, exchange-correlation functionals and nuclear
contributions, and these values are presented in memory that the real
and imaginary parts of each value are consecutive. This affects:


	get_overlap_exp()


	get_one_oper_exp()


	get_two_oper_exp()


	get_xc_fun_exp()


	get_zero_oper_contrib()






	In order to reduce the use of temporary matrices and values, OpenRSP
requires that calculated integral matrices and expectation values
should be added to the returned argument. OpenRSP will zero the
entries of these matrices and expectation values at first. This
requirement affects the callback functions of one- and two-electron
operators, exchange-correlation functionals and nuclear contributions:


	get_overlap_mat() and get_overlap_exp()


	get_one_oper_mat() and get_one_oper_exp()


	get_two_oper_mat() and get_two_oper_exp()


	get_xc_fun_mat() and get_xc_fun_exp()


	get_zero_oper_contrib()









OpenRSP Callback Functions (C version)

Examples of C callback functions can be found in these files
tests/OpenRSP*Callback.c. The detailed information of these callback
functions are given as follows.


	
void get_pert_concatenation(pert_label, first_cat_comp, num_cat_comps, num_sub_tuples, len_sub_tuples, user_ctx, rank_sub_comps)

	User specified function for getting the ranks of components of
sub-perturbation tuples (with the same perturbation label) for given
components of the corresponding concatenated perturbation tuple, the last
argument for the function OpenRSPSetPerturbations().


	Parameters

	
	pert_label (const QcPertInt) – the perturbation label


	first_cat_comp (const QInt) – rank of the first component of the concatenated
perturbation tuple


	num_cat_comps (const QInt) – number of components of the concatenated perturbation
tuple


	num_sub_tuples (const QInt) – number of sub-perturbation tuples to construct the
concatenated perturbation tuple


	len_sub_tuples (const QInt*) – length of each sub-perturbation tuple, size is
num_sub_tuples; so that the length of the concatenated perturbation
is sum(len_sub_tuples)


	user_ctx (void*) – user-defined callback function context






	Var rank_sub_comps

	ranks of components of sub-perturbation tuples for
the corresponding component of the concatenated perturbation tuple,
i.e. num_cat_comps components starting from the one with rank
first_cat_comp, size is therefore num_sub_tuples \(\times\)
num_cat_comps, and arranged as [num_cat_comps][num_sub_tuples]



	Vartype rank_sub_comps

	QInt*



	Return type

	void









NOTE: get_pert_concatenation() will not be invoked in the current
release so that users can use a “faked” function for it.


	
void get_overlap_mat(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels, ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, num_int, val_int)

	User-specified callback function to calculate integral matrices of overlap
operator as well as its derivatives with respect to different perturbations,
the second last argument for the function OpenRSPSetOverlap().


	Parameters

	
	bra_num_pert (const QInt) – number of perturbations on the bra center


	bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert


	bra_pert_orders (const QInt*) – orders of perturbations on the bra center,
size is bra_num_pert


	ket_num_pert (const QInt) – number of perturbations on the ket center


	ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert


	ket_pert_orders (const QInt*) – orders of perturbations on the ket center,
size is ket_num_pert


	oper_num_pert (const QInt) – number of perturbations on the overlap operator 2


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert 3


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the product of the sizes
of perturbations on the bra, the ket and the overlap operator






	Var val_int

	the integral matrices to be added, size is num_int, and
arranged as [oper_pert][bra_pert][ket_pert]



	Vartype val_int

	QcMat*[]



	Return type

	void










	2

	Here perturbations on the overlap operator represent those acting on the
whole integral of the overlap operator, i.e. they can act on either the
bra center or the ket center by applying the rule of derivatives of a
product.



	3

	Only overlap integrals perturbed on the bra and/or the ket, and those
perturbed on the whole integral are needed in the calculations. It means
that, OpenRSP will only ask for overlap integrals either with
perturbations on the bra and/or ket (oper_num_pert=0), or with
perturbations on the whole overlap integral (bra_num_pert=0 and
ket_num_pert=0).






	
void get_overlap_exp(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels, ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified function for calculating expectation values of the overlap
operator and its derivatives, the last argument for the function
OpenRSPSetOverlap().


	Parameters

	
	bra_num_pert (const QInt) – number of perturbations on the bra center


	bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert


	bra_pert_orders (const QInt*) – orders of perturbations on the bra center,
size is bra_num_pert


	ket_num_pert (const QInt) – number of perturbations on the ket center


	ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert


	ket_pert_orders (const QInt*) – orders of perturbations on the ket center,
size is ket_num_pert


	oper_num_pert (const QInt) – number of perturbations on the overlap operator 4


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert


	num_dmat (const QInt) – number of atomic orbital (AO) based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of the expectation values, as the product of sizes of
perturbations on the bra, the ket, the overlap operator and the number
of density matrices (num_dmat)






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[num_dmat][oper_pert][bra_pert][ket_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	4

	Similar to the callback function get_overlap_mat(), OpenRSP will
only ask for expectation values either with perturbations on the bra
and/or ket (oper_num_pert=0), or with perturbations on the whole
overlap integral (bra_num_pert=0 and ket_num_pert=0).






	
void get_one_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the
one-electron operator and its derivatives, the second last argument for the
function OpenRSPAddOneOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the one-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the one-electron
operator, size is oper_num_pert


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the size of
perturbations that are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders






	Var val_int

	the integral matrices to be added, size is num_int



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_one_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified callback function to calculate expectation values of
one-electron operator as well as its derivatives with respect to different
perturbations, the last argument for the function
OpenRSPAddOneOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the one-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the one-electron
operator, size is oper_num_pert


	num_dmat (const QInt) – number of AO based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of expectation values, as the product of the size of
perturbations on the one-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of density matrices (num_dmat)






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as [num_dmat][oper_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_two_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the
two-electron operator and its derivatives, the second last argument for the
function OpenRSPAddTwoOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the two-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the two-electron
operator, size is oper_num_pert


	num_dmat (const QInt) – number of AO based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices (\(\boldsymbol{D}\))
for calculating
\(\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D})\),
where \(\texttt{perturbations}\) are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders.


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the product of the size
of perturbations on the two-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of AO based density matrices (num_dmat)






	Var val_int

	the integral matrices to be added, size is num_int,
and arranged as [num_dmat][oper_pert]



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_two_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, dmat_len_tuple, num_LHS_dmat, LHS_dens_mat, num_RHS_dmat, RHS_dens_mat, user_ctx, num_exp, val_exp)

	User-specified callback function to calculate expectation values of
two-electron operator as well as its derivatives with respect to different
perturbations, the last argument for the function
OpenRSPAddTwoOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the two-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the two-electron
operator, size is oper_num_pert


	dmat_len_tuple (const QInt) – length of different perturbation tuples of the
left-hand-side (LHS) and right-hand-side (RHS) AO based density
matrices passed; for instance, if the LHS density matrices passed
are (\(\boldsymbol{D}\), \(\boldsymbol{D}^{a}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{ab}\)), and the
RHS density matrices passed are (\(\boldsymbol{D}^{b}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{bc}\),
\(\boldsymbol{D}^{d}\)), then dmat_len_tuple equals to 4,
and that means we want to calculate
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D})\boldsymbol{D}^{b}]\),
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{a})\boldsymbol{D}^{c}]\),
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{b})\boldsymbol{D}^{bc}]\),
and \(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{ab})\boldsymbol{D}^{d}]\),
where \(\texttt{perturbations}\) are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders.


	num_LHS_dmat (const QInt*) – number of LHS AO based density matrices passed for
each LHS density matrix perturbation tuple, size is dmat_len_tuple;
sticking with the above example, num_LHS_dmat will be
{1, N_a, N_b, N_ab} where N_a, N_b and N_ab are
respectively the numbers of density matrices for the density matrix
perturbation tuples a, b and ab


	LHS_dens_mat (QcMat*[]) – the LHS AO based density matrices (\(\boldsymbol{D}_{\text{LHS}}\))
for calculating
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}_{\text{LHS}})\boldsymbol{D}_{\text{RHS}}]\),
size is the sum of num_LHS_dmat


	num_RHS_dmat (const QInt*) – number of RHS AO based density matrices passed for
each RHS density matrix perturbation tuple, size is dmat_len_tuple;
sticking with the above example, num_RHS_dmat will be
{N_b, N_c, N_bc, N_d} where N_b, N_c N_bc and N_d
are respectively the numbers of density matrices for the density matrix
perturbation tuples b, c, bc and d


	RHS_dens_mat (QcMat*[]) – the RHS AO based density matrices (\(\boldsymbol{D}_{\text{RHS}}\))
for calculating
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}_{\text{LHS}})\boldsymbol{D}_{\text{RHS}}]\),
size is the sum of num_RHS_dmat


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of expectation values, as the product of the size
of perturbations on the two-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of pairs of LHS and RHS density matrices, and the number of
pairs of LHS and RHS density matrices can be computed as the dot product
of num_LHS_dmat and num_RHS_dmat






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[dmat_len_tuple][num_LHS_dmat][num_RHS_dmat][oper_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_xc_fun_mat(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category, dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the XC
functional and its derivatives, the second last argument for the function
OpenRSPAddXCFun().


	Parameters

	
	xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional


	xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional, size is
xc_len_tuple


	num_freq_configs (const QInt) – the number of different frequency configurations to
be considered for the perturbation tuple specified by xc_pert_tuple


	pert_freq_category (const QInt*) – category of perturbation frequencies, size is
[num_freq_configs][xc_len_tuple]. Take \(\mathcal{E}^{gfff}\) as an
example, suppose we have four different frequency configurations:
“0.0,0.0,0.0,0.0” (\(3N\times 10\) unique elements),
“0.0,-0.2,0.1,0.1” (\(3N\times 18\) unique elements),
“0.0,-0,3,0.1,0.2” (\(3N\times 27\) unique elements) and
“0.0,-0.1,0.1,0.0” (\(3N\times 27\) unique elements), the
pert_freq_category argument would then be (1,1,1,1, 1,2,3,3,
1,2,3,4, 1,2,3,1).


	dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed; for instance, the complete density
matrix perturbation tuples (canonically ordered) for a property
\(\mathcal{E}^{abc}\) (i.e. the perturbation tuple xc_pert_tuple
is abc) are (\(\boldsymbol{D}\), \(\boldsymbol{D}^{a}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{ab}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{ac}\),
\(\boldsymbol{D}^{bc}\)), and with the \((0,2)\) rule, the
relevant density matrix perturbation tuples become (\(\boldsymbol{D}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{c}\),
\(\boldsymbol{D}^{bc}\)) that gives the dmat_num_tuple as 4


	dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple; sticking with
the above example, the density matrix perturbation tuples passed are
(\(\boldsymbol{D}\), \(\boldsymbol{D}^{b}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{bc}\)) and their
associated indices dmat_idx_tuple is {1, 3, 5, 7} because these
numbers correspond to the positions of the “\((k,n)\)-surviving”
perturbation tuples in the canonically ordered complete density matrix
perturbation tuples


	num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by
dmat_idx_tuple) and all frequency configurations, that is
num_freq_configs \(\times\sum_{\text{i}}N_{\text{i}}\), where
\(N_{\text{i}}\) is the number of density matrices for the density
matrix perturbation tuple dmat_idx_tuple[i] for a frequency
configuration


	dens_mat (QcMat*[]) – the collected AO based density matrices, size is
num_dmat, and arranged as [num_freq_configs][dmat_idx_tuple]


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, equals to the product of
the size of perturbations on the XC functional (specified by the
perturbation tuple xc_pert_tuple) and the number of different
frequency configurations num_freq_configs






	Var val_int

	the integral matrices to be added, size is num_int, and
arranged as [num_freq_configs][xc_pert_tuple]



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_xc_fun_exp(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category, dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified function for calculating expectation values of the XC
functional and its derivatives, the last argument for the function
OpenRSPAddXCFun().


	Parameters

	
	xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional


	xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional, size is
xc_len_tuple


	num_freq_configs (const QInt) – the number of different frequency configurations to
be considered for the perturbation tuple specified by xc_pert_tuple


	pert_freq_category (const QInt*) – category of perturbation frequencies, size is
[num_freq_configs][xc_len_tuple].


	dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed


	dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple


	num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by
dmat_idx_tuple) and all frequency configurations, that is
num_freq_configs \(\times\sum_{\text{i}}N_{\text{i}}\), where
\(N_{\text{i}}\) is the number of density matrices for the density
matrix perturbation tuple dmat_idx_tuple[i] for a frequency
configuration


	dens_mat (QcMat*[]) – the collected AO based density matrices, size is
num_dmat, and arranged as [num_freq_configs][dmat_idx_tuple]


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of the expectation values, equals to the product of
the size of perturbations on the XC functional (specified by the
perturbation tuple xc_pert_tuple) and the number of different
frequency configurations num_freq_configs






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[num_freq_configs][xc_pert_tuple][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_zero_oper_contrib(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, size_pert, val_oper)

	User-specified callback function to calculate contributions from the
zero-electron operator, the last argument for the function
OpenRSPAddZeroOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the zero-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the zero-electron operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the zero-electron operator,
size is oper_num_pert


	user_ctx (void*) – user-defined callback function context


	size_pert (const QInt) – size of the perturbations on the zero-electron operator






	Var val_oper

	contributions from the zero-electron operator to be added,
arranged as [size_pert][2]



	Vartype val_oper

	QReal*



	Return type

	void










	
void get_linear_rsp_solution(num_pert, num_comps, num_freq_sums, freq_sums, RHS_mat, user_ctx, rsp_param)

	User-specified callback function of linear response equation solver, the
last argument for the function OpenRSPSetLinearRSPSolver().


	Parameters

	
	num_pert (const QInt) – number of different perturbations on the right hand side of
the linear response equation


	num_comps (const QInt*) – number of components of each perturbation, size is
num_pert


	num_freq_sums (const QInt*) – for each perturbation, number of complex frequency
sums on the left hand side of the linear response equation, size is
num_pert


	freq_sums (const QReal*) – the complex frequency sums on the left hand side of the
linear response equation, size is twice of the sum of num_freq_sums,
the real and imaginary parts of each frequency sum are consecutive in
memory


	RHS_mat (QcMat*[]) – RHS matrices, size is the dot product of num_comps and
num_freq_sums, and index of num_freq_sums runs faster in memory


	user_ctx (void*) – user-defined callback function context






	Var rsp_param

	solved response parameters, size is the dot product of
num_comps and num_freq_sums, and index of num_freq_sums runs
faster in memory



	Vartype rsp_param

	QcMat*[]



	Return type

	void












OpenRSP Callback Subroutines (Fortran version)

The callback subroutines of Fortran codes take almost the exact arguments as
the callback functions of C codes. One difference is the type convention
between C and Fortran, which has been discussed in Secion
Functions of OpenRSP API (Fortran version).  Moreover, the pointers of basic types
(integer and real numbers) in the C codes should be converted to corresponding
array in Fortran. The array of QcMat pointers should be converted to an
array of type(QcMat) in Fortran. Last, the user-defined callback
function/subroutine context should be replaced by type(C_PTR).

We will develop Fortran unit testing in next release. For the time being,
interested users can refer to LSDalton for examples of Fortran callback
subroutines.






Limitations or Known Problems


	“T matrix contributions” - i.e. contributions from the perturbed
“half-time-differentiated” overlap matrix - are not yet supported.
These contributions are only nonzero for
perturbations that both a) affect the basis set and b) have frequencies other
than zero. The most relevant such kind of perturbation is the magnetic dipole
perturbations using London atomic orbitals. Properties consisting of only
other kinds of perturbations - such as geometric displacement of the nuclei
or electric dipole perturbations - are unaffected by the lack of T matrix
contributions.


	Currently we use QcPertInt (defined as QInt type in
include/RSPPerturbation.h, and src/fortran/RSPPertBasicTypes.F90 for
Fortran APIs) to reprenset several perturbation labels (see
OpenRSP Notations and Conventions), in which one label is described
by OPENRSP_PERT_LABEL_BIT bits (that can be modified during the step
ccmake, see Compile OpenRP).

For the time being, we do not suggest that users change the type of
QcPertInt, because other integer types are not supported by OpenRSP yet.



	The current implementation for calculation of residues of response functions
is significantly limited in generality. Currently, only electric dipole perturbations
and single residues are possible; furthermore, there are significant limitations for
the calculation setup. These limitations are described in further detail in the manual
of LSDalton in its (at the time of writing unreleased) 2020 version.







Unit Testing

After successfully building OpenRSP (see Compile OpenRP), we
recommend users perform the unit testing of OpenRSP.

If OPENRSP_TEST_EXECUTABLE is enabled, you will have an executable
openrsp_c_test after successfully building OpenRSP. Run this executable for
unit testing.

If OPENRSP_TEST_EXECUTABLE is disabled, you will need to call the function


	
QErrorCode OpenRSPTest(FILE *fp_log)

	



to perform the unit testing.







          

      

      

    

  

    
      
          
            
  
Get involved with development

We welcome your participation if you want to become involved with the
development of OpenRSP!  Our code is hosted on GitHub [https://github.com/openrsp/openrsp] and is publicly available under the LGPL
v2.1 software license. You may freely obtain and use this code provided that
you do not violate this software license, but us present Authors
would of course would of course also like to get in touch with you.

We are still working on a documentation of the OpenRSP code and API, and this
will be made available on this website when ready. A style guide and
contribution guidelines are also under development.





          

      

      

    

  

    
      
          
            
  
How Sphinx works

These pages are generated using Sphinx. If you want to find out more about
RST/Sphinx, please read http://sphinx-doc.org/rest.html. RST is a subset of
Sphinx. Sphinx is RST with some extensions.


How to modify the website

The website is generated from RST sources under doc/.
Once a pull request is merged, a post-receive hook
updates the documentation on https://openrsp.readthedocs.io.
This typically takes less than a minute.
Our main page http://openrsp.org redirects to https://openrsp.readthedocs.io.




How to locally test changes

You don’t have to push to see and test your changes.
You can test them locally.
For this install the Python packages sphinx and sphinx_rtd_theme.
Then build the pages with:

$ sphinx-build doc/ _build





Then point your browser to _build/html/index.html.
The style is not the same but the content is what you
would see after a successful pull request merge.







          

      

      

    

  

    
      
          
            
  
Tentative Rules for Developers


Short-version


	First analyze the problem, then design the code (data and algorithm
structures), prepare test suite. Last, write the code.


	Make everything as simple as possible.


	Do your best to prepare a readable document.







Long-version


	First of all, please write explicitly what you would like to implement in
doc! Describe your idea using formulas and/or words. Then translate them
into algorithms and data structure. Please do write what
objects/types/variables you will define and their corresponding public and
private functions (including detailed descriptions of the input and output
arguments). It would be better if you could write down the framework of your
implementation using figures. Please also write down the limitations or
risks of your code, for instance, does it stable or have some numerical
error? If yes, how to prevent or how to know if the results are reasonable?

In this stage, you may refer to some rules in object-oriented programming
(OOP). For instance, when you define a module/class etc.:


	it should be open for extension but closed for modification (Open Closed
Principle, OCP),


	subclasses should be substitutable for their base classes (Liskov
Substitution Principle, LSP),


	depend upon abstractions, do not depend upon concretions (Dependency
Inversion Principle, DIP),


	many client specific interfaces are better than one general purpose
interface (Interface Segregation Principle, ISP),


	In other words: low coupling, high cohesion, open for extension, and
closed for changes (from “Developing Chemical Information Systems: An
Object-Oriented Approach Using Enterprise Java”, Fan Li).






	Write the codes. During this stage, we would be happy if you could:


	write comments (in english, one line for each 10-20 line of codes at
least),


	try to use descriptive names for your classes and methods,


	do your best to avoid global variables,


	try to re-use code and try to use libraries,






	This is very important, and should be considered and implemented during the
aforementioned two steps:

Always provide a test suite for each function/subroutine/module
etc., unless you are 100% sure what you did is right. Integration testing
will also be required in some cases.
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Background and Rationale behind OpenRSP

In this chapter, we will discuss the idea behind the implementation, that will
be useful for further development and maintenance, and be useful for new
developers to understand the library and to start their work on top of the
current development.


Theoretical Background

The density matrix-based quasienergy formulation of the Kohn-Sham density
functional response theory using perturbation- and time-dependent basis sets
can be found in [Thorvaldsen2008] and


	Bast2011

	Radovan Bast, Ulf Ekström, Bin Gao, Trygve Helgaker, Kenneth Ruud
and Andreas J. Thorvaldsena, Phys. Chem. Chem. Phys. 13, 2627-2651 (2011).





A relativistic implementation can be found in:


	Bast2009

	Radovan Bast, Andreas J. Thorvaldsen, Magnus Ringholm and Kenneth Ruud,
Chem. Phys. 356(1-3), 177-186 (2009).





The recursive programming techniques implemented in OpenRSP can be found in
[Ringholm2014].

The recursive programming techniques used for the first order residues can be
found in [Friese2015].




Rationale behind OpenRSP

The name OpenRSP stands for “open-ended response theory”, that is, the library
is:


	open-ended for different levels of theory, i.e., one-, two- and
four-component levels;


	open-ended for different wave functions, e.g., atomic-orbital (AO) based
density matrix, molecular orbital (MO) cofficients and coupled cluster (CC);


	open-ended for different kinds of perturbations; and


	open-ended for different host programs.




For the time being, OpenRSP has implemented:


	AO based density matrix response theory (source codes in src/ao_dens),




which works for one-, two- and four-component levels by simply setting the
appropriate Hamiltonian. We are now planning to implement the MO and CC based
response theories.

NOTE: The codes in src/ao_dens are written in Fortran, but OpenRSP APIs
are implemented using C language. Therefore, adapter codes between them are
implemented in src/ao_dens/adapter, for OpenRSP APIs calling the codes of
AO based density matrix response theory, also for the AO based density matrix
response theory codes calling the callback functions (as function pointers
saved by OpenRSP APIs).

To make OpenRSP work for any perturbation, we are now trying to implement the
so called perturbation free scheme, see Perturbation Free Scheme (not implemented).

In order to make it easy for implementing OpenRSP into different host programs
(written in different programming languages), we agree to use the callback
function scheme in OpenRSP in the 2015 Skibotn meeting.  The callback
functions are specified by host programs by calling the OpenRSP APIs (both C
and Fortran APIs implemented) during run time, and will be used by OpenRSP
during calculations, to get contributions from electronic and nuclear
Hamiltonian, and to get response parameters from solving the linear response
equation.

Another important issue affects the implementation of OpenRSP into different
host programs is the matrix and its different operations that OpenRSP
extensively depends on. Different host programs can have different types of
matrices (dense and sparse, sequential and parallel) and written by different
programming languages (e.g. C and Fortran).

To best utilize the host program’s developed matrix routines (if there is), and
also to remove this complexity of matrix problem from OpenRSP, we also agree to
build OpenRSP on top of the QcMatrix library [https://gitlab.com/bingao/qcmatrix]
in the 2015 Skibotn meeting.

The QcMatrix library works as an adapter between OpenRSP and different matrix
routines (implemented in different host programs) that can be written in C and
Fortran. If there is no matrix routines implemented in a host program, it can
fully use the QcMatrix library that will invoke BLAS and LAPACK libraries for
matrix operations.

Therefore, a full picture of OpenRSP used in a C host program can be
(the use of OpenRSP in a Fortran host program can be found in Secion
Implementation of Fortran APIs):

[image: ../_images/openrsp_framework.png]
As shown in the above picture, the OpenRSP library is divided into three parts:


	The “OpenRSP C APIs” have been described in chapter_api_reference
which work mostly between the host program driver routine and other parts of
the OpenRSP library;


	The “OpenRSP response” is the core part in which the response theory
calculations will be performed;


	The “OpenRSP C struct” will be described in Design OpenRSP,
which saves the information of perturbations, Hamiltonian and linear
response equation solver, and will be used by the “OpenRSP response” part
during calculating response functions and residues.










          

      

      

    

  

    
      
          
            
  
Files and Directories of OpenRSP


	cmake and CMakeLists.txt: CMake files.


	LICENSE: The license.


	doc: OpenRSP documentation.


	include: Header files (generated from web/*.nw).


	README.rst: A very important file ;-).


	src: Source codes (src/*.c are generated from web/*.nw).


	ao_dens: atomic orbital density-matrix based response theory.


	fortran: Fortran 2003 APIs (generated from web/*.nw).






	tests: Source codes and data of OpenRSP unit testing (generated from web/*.nw).


	web: WEB files of literate programming.








          

      

      

    

  

    
      
          
            
  
Design OpenRSP


Literate Programming

Currently, we use literate programming for OpenRSP APIs. That is, source codes
in include and src are genereated from the WEB files in web, as
well as developer documentation generated also from these WEB files.

However, lots of extra work on maintenance and further development is required
for literate programming. We are considering to change or abandon literate
programming in OpenRSP.




Symbolic Computations (not implemented)

The recursive programming techniques described in Ref. [Ringholm2014] make it
possible to calculate molecular properties of arbitrary complexity in an
analytical manner. But if we are going to implement MO and CC based response
theories, it may mess up or not be easy to (re)use the already developed codes.

Therefore, I (Bin Gao) propose a clear separation of symbolic and numerical
computations in OpenRSP, and to develop a set of symbolic computation functions
that can be used by response theory codes to get molecular properties still in
a recursive and analytical manner.




Perturbation Free Scheme (not implemented)

For different perturbations, there could be different numbers of components
and arranged in different ways in different host programs. For instance,
there are 9 components for the second order magnetic derivatives in a redundant
way \(xx,xy,xz,yx,yy,yz,zx,zy,zz\), but 6 components in a non-redundant way
\(xx,xy,xz,yy,yz,zz\). There are at most four centers in different
integrals, non-zero high order (\(\ge 5\)) geometric derivatives are only
those with at most four differentiated centers.

To take all the above information into account in OpenRSP will make it so
complicated and not necessary, because response theory actually does not depend
on the detailed knowledge of different perturbations. In particular, when all
the (perturbed) integrals and expectation values are computed by the host
program’s callback functions, the detailed information of perturbations, i.e.
the number of components and how they are arranged in memory can be hidden from
OpenRSP.

The former can be easily solved by sending the number of components of each
perturbation (label) up to its maximum order to the OpenRSP API
OpenRSPSetPerturbations().

The latter can be important for OpenRSP, for instance, when the higher order
derivatives with respect to one perturbation need to be constructed from
several lower order derivatives. For instance, the second order derivatives may
be constructed from the first order ones in the redundant format:


	\(x+x\Rightarrow xx\), \(0+0\Rightarrow 0\),


	\(x+y\Rightarrow xy\), \(0+1\Rightarrow 1\),


	\(x+z\Rightarrow xz\), \(0+2\Rightarrow 2\),


	\(y+x\Rightarrow yx\), \(1+0\Rightarrow 3\),


	\(y+y\Rightarrow yy\), \(1+1\Rightarrow 4\),


	\(y+z\Rightarrow yz\), \(1+2\Rightarrow 5\),


	\(z+x\Rightarrow zx\), \(2+0\Rightarrow 6\),


	\(z+y\Rightarrow zy\), \(2+1\Rightarrow 7\),


	\(z+z\Rightarrow zz\), \(2+2\Rightarrow 8\),




where we have ranked different components in zero-based numbering (numbers on
the right). However, the ranks can be different in different host programs. To
solve this problem, i.e., the mapping relationship of lower and higher order
derivatives with respect to one perturbation, we ask for a callback
function get_pert_concatenation() from host programs, which is the last
argument of the API OpenRSPSetPerturbations().

One should note that, we emphasize the derivatives of one perturbation
here. Because components of higher order derivatives of different perturbations
are simply the direct product of components of lower order derivatives.

The callback function get_pert_concatenation() is used by OpenRSP to
get the ranks of components of sub-perturbation tuples with same perturbation
label (lower order derivatives with respect to one perturbation) for given
components of the corresponding concatenated perturbation tuple (higher order
derivatives).




Hamiltonian in OpenRSP

As aforementioned, the ingradients of Hamiltonian are sent to OpenRSP, and
(perturbed) integrals and expectation values will be computed by the callback
functions of host programs. These include:


	overlap operator (source codes web/RSPOverlap.nw),


	one-electron operators (source codes web/RSPOneOper.nw),


	two-electron operators (source codes web/RSPTwoOper.nw),


	exchange-correlation functionals (source codes web/RSPXCFun.nw),


	zero-electron operators (source codes web/RSPZeroOper.nw),




where the source codes save the callback functions as function pointers in
different C struct, and take care the invoking of these callback functions
during calculations.

Different from the overlap operator, zero-, one- and two-electron operators and
XC functionals are saved in three different linked lists in OpenRSP, in which
each node corresponds to an operator. This makes it possible for host programs
to add different callback functions for different operators, if they do not
want to or can not provide OpenRSP a general callback function.




Response Equation Solver

Similar to the overlap operator, the callback function of a linear response
equation solver is saved as a function pointer in a C struct in OpenRSP.
That will be invoked by OpenRSP for obtaining response parameters, and the
source codes related to the solver are in web/RSPSolver.nw.

OpenRSP will send multiple RHS vectors (or matrices) to the solver, for several
frequency sums on the left hand side of the linear response equation and for
several derivatives with respect to (different) perturbations.

Notice that it would be more common and help the convergence to calculate
several frequencies for the same perturbation, than the other way around. So
the RHS matrices and response parameters are arranged as
[num_comps][num_freq_sums] in the callback function
get_linear_rsp_solution().




Implementation of Fortran APIs

OpenRSP APIs that host programs will use to talk to OpenRSP are written in C
language, with Fortran support by using Fortran 2003 language. The source codes
are in web/FortranAPIs.nw, and the framework of OpenRSP used in a Fortran
host program is shown in the following picture:

[image: ../_images/openrsp_fortran_api.png]
Two new parts are needed for the use of OpenRSP in a Fortran program:


	“OpenRSP Fortran APIs”, and


	“OpenRSP Fortran type”.




Take one-electron operators as an example, the callback subroutine
get_one_oper_mat() is declared in the interface of the OpenRSP
Fortran API OpenRSPAddOneOper_f():

function OpenRSPAddOneOper_f(...)
    interface
        subroutine get_one_oper_mat(oper_num_pert,    &
                                    oper_pert_labels, &
                                    oper_pert_orders, &
                                    num_int,          &
                                    val_int)
            use qcmatrix_f, only: QINT,QREAL,QcMat
            integer(kind=QINT), intent(in) :: oper_num_pert
            integer(kind=QcPertInt), intent(in) :: oper_pert_labels(oper_num_pert)
            integer(kind=QINT), intent(in) :: oper_pert_orders(oper_num_pert)
            integer(kind=QINT), intent(in) :: num_int
            type(QcMat), intent(inout) :: val_int(num_int)
        end subroutine get_one_oper_mat
    end interface
end function OpenRSPAddOneOper_f





But “OpenRSP C struct” codes can not call this subroutine
get_one_oper_mat() directly, because the type(QcMat) can not be
sent from a C function to a Fortran subroutine directly. Instead, another
“OpenRSP Fortran type” subroutine is implemented in OpenRSP that will be
called by the “OpenRSP C struct” codes:

subroutine RSPOneOperGetMat_f(oper_num_pert,    &
                              oper_pert_labels, &
                              oper_pert_orders, &
                              user_ctx,         &
                              num_int,          &
                              val_int)          &
    bind(C, name="RSPOneOperGetMat_f")
    integer(kind=C_QINT), value, intent(in) :: oper_num_pert
    integer(kind=C_QCPERTINT), intent(in) :: oper_pert_labels(oper_num_pert)
    integer(kind=C_QINT), intent(in) :: oper_pert_orders(oper_num_pert)
    type(C_PTR), value, intent(in) :: user_ctx
    integer(kind=C_QINT), value, intent(in) :: num_int
    type(C_PTR), intent(inout) :: val_int(num_int)
    type(OneOperFun_f), pointer :: one_oper_fun  !context of callback subroutines
    type(QcMat), allocatable :: f_val_int(:)     !integral matrices
    integer(kind=4) ierr                         !error information
    ! converts C pointer to Fortran QcMat type
    allocate(f_val_int(num_int), stat=ierr)
    ... ...
    ierr = QcMat_C_F_POINTER(A=f_val_int, c_A=val_int)
    ... ...
    ! gets the Fortran callback subroutine
    call c_f_pointer(user_ctx, one_oper_fun)
    ! invokes Fortran callback subroutine to calculate the integral matrices
    call one_oper_fun%get_one_oper_mat(oper_num_pert,         &
                                       oper_pert_labels,      &
                                       oper_pert_orders,      &
                                       ... ...,               &
                                       num_int,               &
                                       f_val_int)
    ! cleans up
    nullify(one_oper_fun)
    ierr = QcMat_C_NULL_PTR(A=f_val_int)
    ... ...
    deallocate(f_val_int)
end subroutine RSPOneOperGetMat_f





As shown above, the important thing here is to use the QcMatrix function
QcMat_C_F_POINTER converting an array of C pointers val_int to an array
of Fortran type(QcMat) variables f_val_int. For sure, these two point
to the same memory so that any manipulation on the latter equals to that on the
former. Another QcMatrix function QcMat_C_NULL_PTR is used to clean up the
context of Fortran type(QcMat) variables f_val_int (but not the C
pointers val_int).

The procedure when doing a callback of Fortran subroutine can be summarized as:

“OpenRSP response” codes (Fortran) \(\Rightarrow\) “OpenRSP C struct” codes
\(\Rightarrow\) “OpenRSP Fortran type” subroutine RSPOneOperGetMat_f()
\(\Rightarrow\) get_one_oper_mat()

One can also notice that, the argument num_int is needed in the
interface of OpenRSPAddOneOper_f() and the subroutine
RSPOneOperGetMat_f(), and “OpenRSP C struct” codes also need to pass
num_int to RSPOneOperGetMat_f() (from C function to Fortran
subroutine). Therefore, these arguments for the dimension of arrays have to be
passed although they are over complete.




Technical Issues in OpenRSP


	In OpenRSP APIs (C), we choose to represent complex numbers as their real
and imaginary parts in an array. It might be efficient for host programs’
integral codes that all real parts of numbers are put together and
followed by all imaginary parts, but this loss the requirement that OpenRSP
works with complex numbers, not an array with real and imaginary parts.





	We can simply add the following into include/OpenRSP.h, to make OpenRSP
be called by C++ programs:

#ifdef __cplusplus
extern "C" {
#endif

... ...

#ifdef __cplusplus
}
#endif





But C++ programs can also use OpenRSP by:

extern "C" {
    #include "OpenRSP.h"
}





Someone also argues that the former solution makes a C code not a plain C
code, and therefore prefers the latter solution, see
http://stackoverflow.com/questions/16850992/call-a-c-function-from-c-code.

C++ users please decide the better choice by themselves.











          

      

      

    

  

    
      
          
            
  
Daniel’s code documentation

This document is intended as a rough documentation of the fundamental
procedures of the OpenRSP program suite. Its purposes are both to keep
an overview for the experienced programmer and to be an introduction for
the newcomer building some kind of a bridge between the code and the
corresponding articles. It can also serve as some kind of to-do-list for
present of future or present implementations but not yet implemented
parts of the could should be marked properly. Text which is set in
italic within the pseudocode sections gives some explanation of what the
code does at the particular place.

Please note that this documentation is for internal use only.


The subroutine openrsp_calc

Treatment of several different input cases:


Magnetizability




VCD




Manual specification

Manual input of a set of perturbation of frequencies:


	Specify \(k\) and \(n\)


	allocate perturbation_tuple


	loop 1, \(N\) (\(N\) number of perturbations):


	Characterize each perturbation as MAGnetic, ELectric field or
GEOmetrical distortion






	loop 1, \(M\) (\(M\) number of frequencies)


	Initialize frequencies on tuple


	if (\(k=1\)) then


	call rsp_prop with ``F_unpert``=F, ``D_unpert``=D,
``S_unpert``=S




else


	F_already \(\rightarrow\) F


	D_already \(\rightarrow\) D


	S_already \(\rightarrow\) S


	call rsp_prop with F_already``=``F_already,
D_already``=``D_already, S_already``=``S_already















Excitations

Calling the interface to the response solver for the determination of
eigenvalues and eigenvectors.




Residues

Modified version of the manual specification algorithm to calculate the
residues. Several differences have been implemented:


	The only mandatory input for residues is the calculation of
excitation energies (beforehead) and the residue order (e.g. the
number of photons in the corresponding transition property).


	Operator types, frequencies and states for which the residues are to
be calculated can be given optionally


	If the optioms are not set, the residues of the corresponding order
will be calculated for all states using the electric field as
operator. All frequencies are by default set to the \(n\)th
part of the excitation energy of the corresponding state if \(n\)
is the order of the residue.


	For calculating the residue of order \(n\) an input for the
response function of order \(2\cdot n\) is formed which is worked
through with some modifications.


	Specify \(k\) and \(n\)


	Set default for frequencies


	allocate perturbation_tuple


	\(N\) = \(2\cdot n\) (\(N\) number of perturbations,
\(n\) order of the residue)


	loop 1, \(N\):


	Characterize each perturbation as MAGnetic, ELectric field or
GEOmetrical distortion and set the corresponding dimension of the
perturbation either to 3 oder \(3\cdot \mathcal N\)
(\(\mathcal N\) number of atoms)






	loop 1, \(M\) (\(M\) number of frequencies)


	Initialize frequencies on tuple


	Initialize labels on tuple, if needed set to default


	if (\(k=1\)) then


	call rsp_prop with ``F_unpert``=F, ``D_unpert``=D,
``S_unpert``=S




else


	F_already \(\rightarrow\) F


	D_already \(\rightarrow\) D


	S_already \(\rightarrow\) S


	call rsp_prop with F_already``=``F_already,
D_already``=``D_already, S_already``=``S_already















Second harmonic generation




PV2F




PV3F




PV4F




Hyper Raman




efishgcid

???






The subroutine rsp_prop

Calllist:
``  subroutine rsp_prop(pert_unordered, kn, F_unpert, D_unpert, S_unpert,``
F_already, D_already, S_already, zeromat_already, file_id, Xf_already, Df_already),
last 10 objects optional


	if present Xf_already or Df_already, do_residues
\(\rightarrow\) true


	if .not. present S_already then


	F_already \(\rightarrow\) F


	D_already \(\rightarrow\) D


	S_already \(\rightarrow\) S


	initialize zeromat






	else


	initialize zeromat_already






	Determine some arrays concerning the number of perturbations:


	num_blks \(\rightarrow\) No. of blocks of
perturbations depending on freq. and operator


	blk_info \(\rightarrow\) Array containing the start index,
the number of perturbation and the perturbation numbers on the
block


	blk_sizes \(\rightarrow\) Number of non-redundant
perturbations on the block (taking into account also the
perturbation dimension


	property_size \(\rightarrow\) Number of non-redundant
elements of the result tensor






	if present F_already then


	call get_prop with F_already,``D_already``, S_already




else


	call get_prop with F, D, S and also with Xf and Df if needed











The subroutine get_prop

Calllist:
pert, kn, nr_ao, num_blks, blk_sizes, blk_info, property_size, prop, F, D, S,
do_residues, Xf, Df

In this routine the different contributions to the seeked property are
compiled.


	call rsp_fds for calculating perturbed F, D and S


	call rsp_energy for calculating the energy contributions


	call rsp_xcave_interface for calculating the exchange-correlation
contributions


	call rsp_pulay_kn for calculating Pulay \(k,n\)-type
contributions


	call rsp_pulay_lap for calculating Pulay Laplace-contributions


	call rsp_idem_lag for calculating indempotency Lagrangian
contributions


	call rsp_scfe_lag for calculating SCF Lagrangian contributions







Algorithm 1: The subroutine rsp_fds

Calllist: zeromat, pert, kn, F, D, S

This subroutine is recursive and coordinates the calculation of the
perturbed S, F and D intermediates. It corresponds to Algorithm 1
from the Paper on the recursive OpenRSP scheme.


	if pert%n_perturbations .gt. 1 then


	Make pert%n_perturbations subsets of pert, with
n_perturbations reduced by 1 for each element of the subset.


	do \(i\) = 1, ``pert%n_perturbations``rsp_energy


	if sdf_already(D,psub) .eqv. false then: (see below for a
description of this condition)


	call rsp_fds with the \(i\)th element of the
perturbation subset










	if sdf_already(D,psub).eqv.false then: (see below for a
description of this condition)


	if kn_skip(...).eqv.false then: (see below for a
description of this condition)


	\(k\) = 1


	do \(j\)=1, pert%n_perturbations


	``pert%pid``(\(j\)) = \(k\)


	\(k = k + 1\)






	call get_fds

















sdf_already(D,psub)

This logical function checks whether the current perturbed quantities
have already been calculated. The perturbed quantities S, D and F are
linked to each other by pointers showing which of them is the next in
the perturbation row and whether one is the last in the row.




kn_skip(...)

This function checks whether the current perturbed quantity is needed
due to the global indices \(k\) and \(n\).






Algorithm 2: The subroutine get_fds

This subroutine coordinates the calculation of the perturbed
intermediates S, F and D and therefore it is also the interface to the
Response solver which is needed for the calculation of D. It corresponds
to what is named Algorithm 2 in the paper on the recursive OpenRSP
scheme.


	Determine the size of the current perturbation


	Calculate perturbed S and store it on the appropriate variable


	Calculate initial part of perturbed F (call rsp_fock_lowerorder)


	Determine the superstructure of D (what’s that?)


	loop over size of superstructure:


	call rsp_get_matrix_z to contstruct \(\mathbf{D}_p\)


	\(\mathbf{D}_p = \mathbf{D}_p - \mathbf{D} \cdot \mathbf{S} \cdot \mathbf{D}_p - \mathbf{D}_p \cdot \mathbf{S} \cdot \mathbf{D}\)


	Calculate two-electron contribution to Fp


	Calculate xc-contribution to Fp


	Calculate pe-contribution to Fp


	Initialize RHS and Xf


	Call rsp_get_matrix_y to calculate RHS


	if frequency sum of current perturbation not equal to excitation
energy then


	Solve the linear equation system: call rsp_solver_exec


	Calculate Dh


	Calculate homogeneous contribution to the Fock matrix, added
onto Fp


	Add Dh onto Dp






	else


	Read Xf


	contract Xf and RHS


	Read Df and store on Dp


	Scale Dp with contraction, calculate Df and write on
linked list instead of full D


	Nullify Fp


	Calculate homogeneous contribution to the Fock matrix, added
onto Fp






	end if


	add Fp and Dp on the corresponding linked lists











Algorithm 3-type routines

These routines follow Algorithm 3 from the paper on the recursive
OpenRSP scheme and are therefore recursive. In all Algorithm 3-type
subroutines changes due to the calculation of residues will have to be
made.


The subroutine rsp_energy

This subroutine in general calculates terms which depend on contractions
of \(\boldsymbol{\mathcal E}\) and its derivatives with perturbed
and non-pertubed densities.

Coordinates the calculation of the energy contributions.

Calllist: rsp_energy(pert, total_num_perturbations, kn,

num_p_tuples,p_tuples, density_order, D, property_size, cache, prop)

pert,p_tuples are of the p_tuple derived type. pert is the
original perturbation tuple and is used most for keeping track of the
recursion levels. p_tuple is the ’’working tuple’’ of this
subroutine. It is an array with num_p_tuples elements in the current
call of rsp_energy. density_order is a measurement for the
number of derivatives which are found in the densities.
total_num_perturbations is the value n_perturbations from the
initial pert-tuple. This value is kept unchanged from the first call
through the whole recursion and is handed over to get_energy at the
end.

p_tuples works as follows: The first element of the array always
lists the perturbations which are set on the integrals. The second
element lists the perturbations on the first density, the third element
lists the perturbations on the second density etc. density_order is
the sum of the number of elements on p_tuples minus the number of
elements on the first element on p_tuples.


	if pert%n_perturbations.ge.1 then


	if p_tuples(i)%n_perturbations.eq.0 then


	call rsp_energy with the first perturbation removed from
pert to be pert and p_tuples being the first
element of pert, both prepared by special functions






	else


	call rsp_energy with the first perturbation removed from
pert to be pert and p_tuples being t``p_tuples``
extended by one, both prepared by special functions






	removing one element from pert corresponds to go one level up
in recursion. The removed element is the ’’current perturbation’’
of the actual recursion level.


	The two self-calls above correspond to a setting the current
perturbation on the integrals.


	do i=``2, ``num_p_tuples


	if p_tuples(i)%n_perturbations.eq.0 t_new(i)
\(\rightarrow\) first element of pert


	else t_new(i) t_new(i) \(\rightarrow\) t_new(i)
extended by 1


	call rsp_energy with the first perturbation removed from
pert to be pert and p_tuples being t_new(i)


	This self-call corresponds to setting the current perturbation
on one of the existing densities






	if num_p_tuples.le.3 then


	call rsp_energy with the first perturbation removed from
pert to be pert and p_tuples being a combination of
p_tuples and the first element of pert


	This self-call corresponds to a complete chain-rule-like
derivative setting up a new singly-derived density carrying the
current perturbation.










	else


	This is the final recursion level


	Check whether the contribution is needed due to the \(k\),
\(n\)-values and whether it is a relevant contribution to a
residue (if needed)


	Get the data from cache (call property_cache_getdata


	call get_energy











The subroutine rsp_fock_lowerorder

This subroutine in general calculates terms which depend on perturbed
derivates of \(\boldsymbol{\mathcal F}\).

Calllist:
zeromat, pert, total_num_perturbations,num_p_tuples, p_tuples,
density_order, D, property_size, Fp,fock_lowerorder_cache

This subroutine coordinates the calculation of perturbed Fock matrices
which do not depend on the homogeneous part of the perturbed density. It
is recursive and the first part is similar to the first part of
rsp_energy. Therefore most elements on the calllist are simliar.
fock_lowerorder_cache is a special derived type variable to keep
track of the calculated Fock matrix intermediates.


	if pert%n_perturbations.ge.1 then


	Do the same as in the pert%n_perturbations.ge.1-part of
rsp_energy (recursive setup of perturbation lists)






	else


	This is the final recursion level


	Determine which contributions can be skipped due to the density:
All terms which contain densities that have the same or a higher
perturbation order than total_num_perturbations or which are
not relevant for a residue calculation (if needed) are sorted out.


	Function f_l_cache_already: Check whether the corresponding
element is found on cache


	if not found then


	call get_fock_lowerorder \(\rightarrow\) calculate
\(\mathbf{D}_P\), see JCP 128 2008 214108


	modify fock_lowerorder_cache (done in
get_fock_lowerorder)






	else


	Get the corresponding contribution from cache (call
f_l_cache_getdata



















The subroutine rsp_pulay_kn

This subroutine calculates terms of the \((\mathbf{SW})^k_{n_W}\)-type.
The recursion scheme in this subroutine is similar to the one in
rsp_energy nevertheless it is less complex since the perturbations
can only be set either on \(\mathbf{S}\) and \(\mathbf{W}\).
Therefore there are just two self-calls.

Callist: pert, kn, p12, S, D, F, property_size, cache, prop

The perturbation-tuple type variables pert and p12 play about
the same role as pert and p_tuples in the subroutines above.
p12 is a one-d-array with two elements on it.


	if pert%n_perturbations .gt. 0 then


	call rsp_pulay_kn with first element removed from pert
(’’current element’’) and the first element of p12 extended by
the current element. The second element of p12 is left as it
is.


	Corresponds to putting the current perturbation onto
\(\mathbf{S}\).


	call rsp_pulay_kn with first element removed from pert
(’’current element’’) and the first element of p12 left as it
is. The second element of p12 is extended by the curreny
element.


	Corresponds to putting the current perturbation onto
\(\mathbf{W}\).






	else


	Final recursion level


	Look up whether the corresponding contribution is needed due to
the \(k\), \(n\) parameters. \(\rightarrow\)to-do:
Identify relevant terms for residue calculation here


	if needed then


	call get_pulay_kn















The subroutine rsp_pulay_lag

Very similar to rsp_pulay_kn. Calculates the
\((\mathbf{S}^a \mathbf{W})^{bc...})_{k_s,n^{'}_Y}\)-type terms

Calllist: pert, kn, p12, S, D, F, property_size, cache, prop


	if pert%n_perturbations .gt. 0 then


	Do the same recursion scheme as in rsp_pulay_kn






	else


	Final recursion level


	Check whether the term is needed due to the \(k\) and
\(n\)-parameters \(\rightarrow\) to-do: Check here
whether term is needed for residues or not


	Check whether the contribution is already in cache


	if needed and not on cache then


	call get_pulay_lag















The subroutine rsp_scfe_lag

Calculates the terms of the
\((\lambda^a \mathbf{Y})^{bc...}_{k_{\lambda},n^{'}_{Y}}\)-type

Calllist: pert, kn, p12, S, D, F, property_size, cache, prop, very
similar to the two routines before


	if pert%n_perturbations .gt. 0 then


	Do the same recursion scheme as in rsp_pulay_kn, first
self-call: Perturbation on \(\lambda\), second self-call:
Perturbation on \(\mathbf{Y}\)






	else


	Final recursion level


	Check whether the term is needed due to the \(k\) and
\(n\)-parameters \(\rightarrow\) to-do: Check here
whether term is needed for residues or not


	Check whether the contribution is already in cache


	if needed and not on cache then


	call get_scfe_lag















The subroutine rsp_idem_lag

Calculates the terms of the
\((\zeta^a \mathbf{Z})^{bc...}_{k_{\zeta},n^{'}_{Z}}\)-type

Calllist: pert, kn, p12, S, D, F, property_size, cache, prop, very
similar to the three routines before


	if pert%n_perturbations .gt. 0 then


	Do the same recursion scheme as in rsp_pulay_kn, first
self-call: Perturbation on \(\zeta\), second self-call:
Perturbation on \(\mathbf{Z}\)






	else


	Final recursion level


	Check whether the term is needed due to the \(k\) and
\(n\)-parameters \(\rightarrow\) to-do: Check here
whether term is needed for residues or not


	Check whether the contribution is already in cache


	if needed and not on cache then


	call get_idem_lag

















The subroutines coordinating the calculation of perturbed contributions

These routines are called at the final recursion level of the Algorith
3-type routines.


The subroutine get_energy

Calllist:
num_p_tuples, total_num_perturbations,p_tuples, density_order, D,

property_size, cache, prop

with p_tuples being of the p_tuple data type


	Assemble elements of p_tuples in blocks


	Determine the proper indices of p_tuples


	Read unperturbed and perturbed densities


	Calculate the contributions from


	perturbed one-electron integrals


	perturbed overlap matrices


	perturbed two-electron integrals











The subroutine get_fock_lowerorder

This routine coordinates the calculation of the contributions to the
Fock matrix-type intermediayes.

Calllist: zeromat, num_p_tuples, total_num_perturbations, p_tuples,
density_order, D, property_size, Fp,fock_lowerorder_cache

p_tuple is of the perturbation tuple type (array with dimension
num_p_tuples) while fock_lowerorder_cache is a linked list
variable-type which is used for caching the intermediates. zeromat
is an empty matrix-type variable while D is a linked list variable
containing the perturbed densities.


	clone 1st element of p_tuples to t_matrix_newpid (for use
only if all perturbations are on the integrals)


	Characterize the elements of p_tuples .w.r.t. blocks etc.


	if total_num_perturbations.gt.p_tuples(1)%n_perturbations then


	Loop over size of outer indeces


	Read perturbed densities in a loop over num_p_tuples
starting with the 2nd element


	if num_p_tuples .le. 1 Calculate one-electron integral
contributions, results added on tmp


	if num_p_tuples .le. 2 Calculate the-electron integral
contributions, results added on tmp


	if num_p_tuples .le. 2 Calculate PE-contributions, results
added on tmp


	Calculate xc-contributions, results added on tmp
(num_p_tuples is the number of derivatives w.r.t. the
densities. 1el-contributions become zero at derivatives higher
than 1, 2el-contractions become zero at derivatives higher than
2, xc-contributions do not necessarily vanish.


	if num_p_tuples(1)%n_perturbations .gt. 0 then


	Loop over size of inner indices


	Determine offsets


	Write tmp on lower_order_contribution










	else


	Initialize lower_order_contribution with 0






	end if






	Merge all elements of p_tuples to one merged tuple


	Put merged tuple in standard order


	Collect all perturbation indices on from merged tuple on one
1d-array


	Characterize the merged tuple w.r.t. blocks etc.


	Determine offsets and add lower_order_contribution onto Fp






	else


	if num_p_tuples .le. 1 Calculate one-electron integral
contributions, results added on Fp


	if num_p_tuples .le. 2 Calculate the-electron integral
contributions, results added on Fp


	if num_p_tuples .le. 2 Calculate PE-contributions, results
added on Fp


	Calculate xc-contributions, results added on Fp
(num_p_tuples is the number of derivatives w.r.t. the
densities. 1el-contributions become zero at derivatives higher
than 1, 2el-contractions become zero at derivatives higher than 2,
xc-contributions do not necessarily vanish.






	end if


	Nullify a large amount of variables.







The subroutine rsp_get_matrix_zeta

This subroutine is responsible for the calculation of the \(\zeta\)-Lagrangian
multipliers.

Calllist: zeromat, p_tuple_a, kn, superstructure_size, deriv_struct,
total_num_perturbations, which_index_is_pid, indices_len,
ind, F, D, S, Zeta

The variables p_tuple_a and deriv_struct are of the tuple-type.
The result is being returned on Zeta (matrix type).

This subroutine reads several sets of D, F and S intermediates and
composes them to the perturbed \(\zeta\).

The following steps are made:


	loop over size of the superstructure


	For residues: Determine whether \(\mathbf{D}\) is appropriate.
Otherwise: Skip contributions.


	\(\zeta + \mathcal F \mathbf{D} \mathbf{S}\)


	Reading F with a merge of p_tuple_a and 1st element of
ith column of current_derivative_term


	Reading D with the 2nd element of ith column of
current_derivative_term


	Reading S with the 3rd element of ith column of
current_derivative_term






	\(\zeta- \mathcal F \mathbf{D} \mathbf{S}\)


	Reading F with the 1st element of ith column of
current_derivative_term


	Keep D


	Reading S with a merge of p_tuple_a and 3rd element of
ith column of current_derivative_term






	\(\zeta + \tfrac{1}{2} \omega \mathcal S \mathbf{D} \mathbf{S}\)


	Reading 1st S with the 1st element of ith column of
current_derivative_term


	Keep D


	Keep 2nd S






	\(\zeta +  \mathbf{S} \mathbf{D} \mathcal F\)


	Reading S with 1st element of ith column of
current_derivative_term


	Reading D with the 2nd element of ith column of
current_derivative_term


	Reading F with a merge of p_tuple_a and 3rd element of
ith column of current_derivative_term






	\(\zeta- \mathbf{S} \mathbf{D} \mathcal F\)


	Reading S with a merge of p_tuple_a and 1st element of
ith column of current_derivative_term


	Keep D


	Reading F with the 3rd element of ith column of
current_derivative_term






	\(\zeta - \tfrac{1}{2} \omega \mathcal S \mathbf{D} \mathbf{S}\)


	Keep 1st S


	Keep D


	Reading 2nd S with the 3rd element of the ith column of
current_derivative_term














	Add contribution of a fully perturbed \(\boldsymbol{\mathcal F}\)
if allowed due to \(k\) and \(n\).







The subroutine get_scfe_lag

This subroutine coordinates the calculation of the Lagrangian
multipliers \(\lambda^a\) and and the matrix \(\mathbf{Y}\).

Calllist: p12, kn, F, D, S, property_size, cache, prop, with p12
being a 1d-array of the perturbation-tuple type containing the
perturbations for \(\lambda^a\) and \(\mathbf{Y}\) separately.
property_size is an integer, cache is of the cache-data type and
prop is a real 1d-array of property_size containing the
contractions made in this routine.


	Setup derivative superstructures for \(\lambda\) and
\(\mathbf{Y}\).


	Characterize the elements of p12 w.r.t. blocks etc.


	loop over number of outer indices


	Check whether current perturbation combination is relevant for
residues. Two possibilities: 1.) Residue relevant perturbations do
not contribute to \(\lambda\quad \rightarrow\) whole lambda is
calculated, term selection in \(\mathbf{Y}\). 2.) Residue
relevant perturbations contribute to
\(\lambda\quad \rightarrow\) term selection in \(\lambda\),
whole \(\mathbf{Y}\) is calculated.


	call rsp_get_matrix_lambda


	call rsp_get_matrix_y


	store contraction of result on prop_forcache










	merge elements of p12 together, put to standardorder and
characterize


	determine offset


	add elements of prop_forcache onto prop







The subroutine rsp_get_matrix_lambda

Calculates transformations of the
\(\mathbf{D}_1 \cdot \mathbf{S} \cdot \mathbf{D}_2 - \mathbf{D}_2 \cdot \mathbf{S} \cdot \mathbf{D}_1\)-type

Calllist: zeromat, p_tuple_a, superstructure_size, deriv_struct,
total_num_perturbations, which_index_is_pid, indices_len, ind,
select_terms,D, S, L

p_tuple_a and deriv_struct are of the tuple-type. p_tuple_a
corresponds to the 1st element of p12 in the calling routine.
deriv_struct is an outcome of a superstructure determination.
select_terms triggers the selection of terms in residue
calculations. L is a matrix-type variable for \(\lambda\).


	loop over superstructure size


	merge p_tuple_a and deriv_struct(i,1) \(\rightarrow\)
merged_a


	merge p_tuple_a and deriv_struct(i,3) \(\rightarrow\)
merged_b


	read \(\mathbf{D_1}\) with merged_a, store on A


	read \(\mathbf{S}\) with deriv_struct(i,2), store on B


	read \(\mathbf{D_2}\) with deriv_struct(i,3), store on C


	\(L = L - A \cdot B \cdot C\), check before whether one of
the densities fits with the residue condition


	read \(\mathbf{D_1}\) with deriv_struct(i,1), store on A


	read \(\mathbf{D_2}\) with merged_b, store on C


	\(L = L - A \cdot B \cdot C\), check before whether one of
the densities fits with the residue conditions











The subroutine rsp_get_matrix_y

Is used for the calculation of \(\mathbf{Y}\) intermediates both for
the TD-SCF-part and for the calculation of the right-hand-side for the
response equations.

Callist: zeromat, superstructure_size, deriv_struct,
total_num_perturbations, which_index_is_pid, indices_len,
ind, select_terms, F, D, S, Y

deriv_struct is of the tuple-type and an outcome of a superstructure
determination. select_terms triggers the selection of terms in
residue calculations. Y is a matrix-type variable for
\(\mathbf{Y}\).


	Loop over superstructure size


	read F with 1st element of deriv_struct, store on A


	read D with 2nd element of deriv_struct, store on B


	read S with 3rd element of deriv_struct, store on C


	\(Y = Y + A \cdot B \cdot C\), check whether D or F fit with
residues if needed


	read S with 1st element of deriv_struct, store on A


	\(Y = Y + \omega A \cdot B \cdot C\), \(\omega\) is a
frequency sum, check whether D fits with residues if needed


	read S with 1st element of deriv_struct, store on A


	read F with 3rd element of deriv_struct, store on C


	\(Y = Y - A \cdot B \cdot C\), check whether D or F fit with
residues if needed


	read S with 1st element of deriv_struct, store on A


	read S with 3rd element of deriv_struct, store on C


	\(Y = Y - \tfrac{1}{2} \cdot \omega A \cdot B \cdot C\),
slightly different shape of \(\omega\) due to different
combinations of \(\omega\) on intermediates, check whether D
fits with residues if needed













The exchange-correlation part


The subroutine rsp_xcave_interface

Coordinates the calculation of the xc-contributions to the energy
derivatives. Handles energy orders up to order 5 which can be composed
of different compositions of electrical field and geometrical
distortions. Pure geometrical distortions need no treatment of perturbed
cx-contributions. The main point for this subroutine is to read to
proper densities and to call the subroutine xc_integrate which does
the integral-density contractions. xc_integrate is called in a
system of \(n+m\) loops where \(n\) is the number of geometrical
distortions and \(m\) is the number of electrical field
perturbations which are involved. Every loop runs over \(3\cdot N\)
steps where \(N\) is the number of atoms or over three steps where
every step represents one spatial component of the electrical field.




subroutine xc_integrate


	Store density matrix on file dmat


	do some initializations


	Determine level of derivative w.r.t. geometrical distortion


	read functional which is to be used


	Read number of batches


	do loop over number of batches


	Read number of grid points


	do some allocations and read grid


	redefine grid points (call xcint_mpi_distribute_points)


	call xc_integrate_batch


	symmetrize result








This subroutine sets up a set of batches and calls
xc_integrate_batch in a loop over the number of batches.




subroutine xc_integrate_batch

This subroutine is up to now only documented for the case that the
get_ave-flag is true


	Parse the functional and determine number of varibles according to
the functional


	loop points=1, nr_points in steps of max_block_length


	nr_points has to do with the grid


	max_block_length is set to 100 by parameter


	read AOs (call karaoke_get_ao) and compress them (call
karaoke_compress_ao)


	evaluate the density (call evaluate_density), i.e. do the
contraction AO:math:_{bk}cdot AO:math:_{bl}cdot
D:math:_{kl} assuming a symmetric density


	update number of evaluated electrons


	if get_ave then


	Determine the level of derivative w.r.t. geometrical distorions


	Determine the start indices of the perturbed density matrices
which are needed (corresponding to the level of perturbation
and the choice of \(k\) and \(n\) (call
up_dmat_index in a set of if-conditions depending on the
perturbation level).


	call evaluate_density once more, assuming a non-symmetric
density this time


	Construct xcin from the output of evaluate_density


	call xc_eval_star using xcin, yielding xcout as
output


	add xcout to energy termiwise












The subroutine xc_eval_star acts merely as some kind of wrapper
which calls xceval which is obiously written in C.






The handling of the perturbed matrices

The handling of the perturbed intermediates S, D and F in the recursive
scheme requires some effort and is done using two derived types and a
large amount of functions and subroutines managing them. These derived
types are:


The p_tuple derived type

This derived type variable contains the informations about the
perturbations that are handled. It contains informations on the type of
the perturbation which is handeled (electric or magnetic field encoded
by EL and MAG, respectively; geometrical distortion denoted by
GEO), its level (first, second, third etc. derivative), its
dimension (number of components e.g. 3 for the first derivative
w.r.t. the electric field) and the corresponding frequencies.

In order to implement residues also the handling of excitation
energies and eigenvectors should be managed by p_tuple with EXCI
as the ’’perturbation’’-type, the corresponding excitation energies as
frequencies and the number of excitations as dimension.




The matrix derived type

It contains of several quantities describing the size and the properties
(symmetry, hermiticity etc.) of the matrix, the elements and a
self_pointer which is used for copying the matrix.




The SDF derived type

This derived type contains of an allocatable array of
matrix-variables called data as well as a variable of the
p_tuple-type, a logical last and a pointer next which is of
the SDF-type himself. So it can be imagined as some kind of a shell
for a matrix array which contains additional information concerning its
management.

In the corresponding initialization routine the matrix-array is
allocated by 1 and the p_tuple-variable is completely nullified.
last is set to true indicating that this is the last intermediate on
the corresponding SDF-type variable that has been formed. These
last and next-variables are used in the subroutine get_fds
in the postprocessing of the calculated perturbed variables to keep
track of the calculated perturbed intermediates.

All through the program there are three major variables of this type:
F, D and S corresponding to the Fock matrix, the density
matrix and the overlap matrix and their pertubed derivatives. In general
the variables of the SDF derived type work like a linked list. This
means that the unperturbed matrix and its perturbed derivatives are
connected by pointers (next in the SDF-data type). Regarding
e.g. the calculation of a second hyperpolarizability (\(4^{th}\)
derivative w.r.t. the electric field) the storage of all perturbed Fock
matrices F looks as follows:

ccccc

Element & Number of matrices & Content of p_tuple & Value of &
Element next
No. & & & last & points to
1 & 1 & 0 (unperturbed) & false & 2
2 & 3 (drv. w.r.t. el. field comp. \(x,y,z\)) & 1:math:^{st}
drv. & false & 3
3 & 6 (drv. w.r.t. el. field comp. \(xx,xy,xz,yy,yz,xx\)) &
2:math:^{nd} drv. & false & 4
4 & 10 (drv. w.r.t. el. field comp. \(xxx,xxy,xxz,xyy,\) &
3:math:^{rd} drv. & false & 5
& \(xyz,xzz,yyy,yyz,yzz,zzz\)) & &
5 & 15 (drv. w.r.t. el. field comp. \(xxxx,xxxy,\) & 4:math:^{th}
drv. & true & 1
& \(xxxz,xxyy,xxyz,\) & &
& \(xxzz,xyyy,xyyz,xyzz,xzzz,\) & &
& \(yyyy,yyyz,yyzz,yzzz,zzzz\) & &

The order of the elements in the table also corresponds to the order in
which these elements are calculated. The number of element in every
perturbation level is called the dimensions of the perturbation.

By following the pointer next from one perturbation level to the
next every perturbation level can be read by the corresponding routines
although there seems to be only one SDF-type variable for e.g. the
Fock matrix.

In order to implement the residues the SDF derived type is to be
used to manage both the excitation eigenvectors \(\mathbf{X}_f\) and
the corresponding excitation densities \(\mathbf{D}^f\) with the two
new variables Xf and Df.




Subroutines for handling the perturbed intermediates

All these subroutines and functions are collected in the
rsp_sdf_caching.f90.


The subroutine sdf_setup_datatype

This subroutine is called at the beginning of the ’’life’’ of a
SDF-type variable. It does the following:


	Make next show on the present variable


	Set last to true


	allocate p_tuple-type array with zero


	allocate the data-array with 1 and initialize it with the matrix
from the callist




This corresponds to setting up the variable which at this point only
contains an unperturbed intermediate.




The subroutine sdf_init

This subroutine starts the linked list by adding an input
perturbation-tuple to what is on the input SDF-variable, allocating
the matrix-part of the derived type and to set up the matrix-part of
the variable.




subroutine sdf_getdata_s


	Determines the offset of the seeked perturbation


	Searches for the seeked level of perturbation by following the
next-pointer between the variables and comparing the inherent
p_tuple-type variables with the input one.


	Writes the seeked data on the input variable







function sdf_next_element

Moves the next-pointer from the input array itself to the next one.




function sdf_getdata

Does about the same as the subroutinte sdf_getdata_s




subroutine sdf_add


	Checks whether the corresponding perturbed quantity has already been
calculated


	If not:


	Set up a variable new_element of the SDF data type


	Follow the pointer next until the last element (highest level
in perturbation) has been found


	if found then


	Set last to false


	Make next point to new_element



















Recognition of elements which are relevant for the residues


subroutine recognize_contribution

In order to determine which term contributes to a residue and which
not the recursive subroutine recognize_contribution examines the
frequencies of all relevant perturbation or all their possible sums
(depending on the input) on a match with the excitation energy or
two excitation energies, respectively. This subroutine works as follows:



	Arguments Perturbation tuple (\(b_N\)), number of elements in the sum (n), perturbation frequencies (\(omega_N\)), number of actual sum elements (j), actual sum value (\(omega\))


	Start values: number of actual sum elements=1,  actual sum value=0


	Result returned on logical recognized


	recognized set to false


	for i in j, n-1 do


	if n =1 then



	if \(omega+omega_N(i)=\) excitation energy then



	recognized \(\leftarrow\) true


	return to previous invocation









	end if









	else



	recognized \(\leftarrow\) call self( \(b_N,n-1,omega+omega_N(i),i+1\) )









	end if


	if recognized exit loops






	end for












Blocking of perturbations and handling of the perturbation tuple


subroutine derivative_superstructure

This subroutine is recursive and Fill in the purpose - not yet properly
understood.

Calllist:
pert, kn, primed,current_derivative_term, superstructure_size,
new_element_position, derivative_structure

The variables pert,current_derivative_term and
derivative_structure are of the p_tuple-type. pert is a
scalar, current_derivative_term has the dimension 3 while
derivative_structure is 2-dimensional with the dimensions
superstructure_size and 3. primed is a logical.


	if pert%n_perturbations.gt.0 then


	1st self-call. Callist unchanged apart due to the original one
apart from the first two tuple-type variables:


	pert reduced by the first element.


	1st element of current_derivative_term extended by 1st
element of pert; elements 2 and 3 from
current_derivative_term






	2nd self-call. Callist unchanged apart due to the original one
apart from the first two tuple-type variables:


	pert reduced by the first element.


	1st element of current_derivative_term; 2nd element of
current_derivative_term extended by 1st element of
pert; 3rd element of current_derivative_term






	3rd self-call. Callist unchanged apart due to the original one
apart from the first two tuple-type variables:


	pert reduced by the first element.


	1st and 2nd element of current_derivative_term; 3rd element
of current_derivative_term extended by 1st element of
pert










	else final recursion level


	new_element_position = new_element_position + 1


	derivative_structure(new_element_position, :) = current_derivative_term(:)




Thereby this routine distributes perturbations on a new supertuple. In
every self-call the current perturbation of the recursion level (the
first one of pert) is put to another of the three elements of
current_derivative_term.




function get_num_blks

Compares the different elements of the input perturbation tuple with
each other. Elements who are equal concerning perturbation operator and
frequency are put in one block




function get_blk_info

Handles the blk_info-array which has two dimensions: num_blks
and 3. For every block it contains the index of the first perturbation
on the block, the number of perturbations on the block and the dimension
of the perturbation on the block.




function get_triangular_sizes

This function triggers a cascade of functions which at least determine
how many non-redundant perturbations there are on each block. In
contrast to the determination of the block size is takes into account
the dimension of the perturbation.




function get_triangulated_size

This function determines the number of non-redundant elements of the
result tensor.






General points for adopting the recursive code to handle residues

Things to be done for adopting the recursive scheme to the calculation
of residues:


	Put calculation of excitation energies to work \(\rightarrow\)
done


	Rewrite input parse such that an input for residues is recognized.


	Use the manual specification scheme for response functions to also
calculate the residues.


	Modify the calculation of \(\mathbf{M}\), set up a
functionality to contract it with \(\mathbf{X}_f^{*}\) and to
keep track of this result which is the right transition matrix
element.


	Introduce the calculation of \(\mathbf{D}^f\) as a replacment for
\(\mathbf{D}^{k\rightarrow f}_H\)


	Implement a functionality that identifies whether a term is needed
for the residues of not (must check dependence on a density which
depends on the excitation energy)


	Put this function to work in the code and replace
\(\mathbf{D}^{k\rightarrow f}_H\) by \(\mathbf{D}^f\) in the
following subroutines:


	rsp_energy


	rps_fock_lowerorder


	rsp_idem_lag


	rps_scfe_lag






	This will result in a functionality for calculation of residues
w.r.t. electric field perturbation


	Then go on with modifying the following routines


	rsp_pulay_kn


	rsp_scfe_lag






	This should result in a fully applicable code




The remaining questions are the following


	How to keep track of the excitation eigenvectors?


	How to shape the output of the program?


	How to keep track of double residues?





The selection of the relevant terms

For the calculation of residues several terms vanish from the expression
compared to the calculation of a response function. Namely all terms do
vanish which do not depend on the frequency or frequency sum which tend
towards the excitation energy.


Single residues as transition properties

If transition properties are seeked, single residues have to be
calculated. For these residues the \(2n+1\)-rule always has to be
kept since otherwise no appropriate decomposition in a left and a right
transition matrix element can be obtained. Concerning the involved
response function we then can assume to have a \(2n+2\)-rule
concerning the linear equation systems that have to be solved since for
the perturbation combination with its frequency tending towards the
excitation energy no linear equation system has to be solved. Keeping
the \(2n+1\)-rule for setting up the response function fundamental
for the formation of the seeked residue and setting all vanishing terms
to zero we find that there is only one term remaing which is not in
accordance with a \(2n+2\)-rule. Nevertheless for this term the
response equations do not have to be solved.

We can summarize the rules for single residues in the following way:


	\(2n+1\)-rule for setting up the fundamental response function


	\(2n+1\)-rule for the solution of the response equations














          

      

      

    

  

    
      
          
            
  
API Reference

In order to use OpenRSP, C users should first include the header file
of OpenRSP in their codes:

#inclde "OpenRSP.h"





while Fortran users should use the OpenRSP module:

use OpenRSP_f





In this chapter, we will describe all the functions defined in OpenRSP
API for users. These functions should be invoked as:

ierr = OpenRSP...(...)





where ierr contains the error information. Users should check if
it equals to QSUCCESS (constant defined in
QcMatrix library [https://gitlab.com/bingao/qcmatrix]). If not, there
was error happened in the invoked function, and the calculations should
stop.


Functions of OpenRSP API (C version)


	
QErrorCode OpenRSPCreate(open_rsp, num_atoms)

	Creates the context of response theory calculations, should be called at first.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP* (struct*)



	Parameters

	
	num_atoms (const QInt) – number of atoms (to be removed after perturbation free scheme implemented)






	Return type

	QErrorCode (error information)










	
QErrorCode OpenRSPSetLinearRSPSolver(open_rsp, user_ctx, get_linear_rsp_solution)

	Sets the context of linear response equation solver.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	user_ctx (void*) – user-defined callback function context


	get_linear_rsp_solution (const GetLinearRSPSolution (function
pointer void (*)(...))) – user-specified callback function of linear
response equation solver, see the callback function
get_linear_rsp_solution()






	Return type

	QErrorCode










	
QErrorCode OpenRSPSetPerturbations(open_rsp, num_pert_lab, pert_labels, pert_max_orders, pert_num_comps, user_ctx, get_pert_concatenation)

	Sets all perturbations involved in response theory calculations.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels involved
in calculations


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	pert_num_comps (const QInt*) – number of components of a perturbation described by
exactly one of the above different labels, up to the allowed maximal
order, size is therefore the sum of pert_max_orders


	user_ctx (void*) – user-defined callback function context


	get_pert_concatenation (const GetPertCat (function pointer void (*)(...))) – user specified function for getting the ranks
of components of sub-perturbation tuples (with the same perturbation
label) for given components of the corresponding concatenated
perturbation tuple






	Return type

	QErrorCode









NOTE: get_pert_concatenation() will not be invoked in the current
release; OpenRSP will use it after the perturbation free scheme implmented.


	
QErrorCode OpenRSPSetOverlap(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_overlap_mat, get_overlap_exp)

	Sets the overlap operator.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the overlap operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_overlap_mat (const GetOverlapMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of overlap operator as well as its derivatives with
respect to different perturbations, see the callback function
get_overlap_mat()


	get_overlap_exp (const GetOverlapExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of overlap operator as well as its derivatives with
respect to different perturbations, see the callback function
get_overlap_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddOneOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_one_oper_mat, get_one_oper_exp)

	Adds a one-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the one-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_one_oper_mat (const GetOneOperMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of one-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_one_oper_mat()


	get_one_oper_exp (const GetOneOperExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of one-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_one_oper_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddTwoOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_two_oper_mat, get_two_oper_exp)

	Adds a two-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the two-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_two_oper_mat (const GetTwoOperMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of two-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_two_oper_mat()


	get_two_oper_exp (const GetTwoOperExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of two-electron operator as well as its derivatives
with respect to different perturbations, see the callback function
get_two_oper_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddXCFun(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_xc_fun_mat, get_xc_fun_exp)

	Adds an exchange-correlation (XC) functional to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the XC functional


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_xc_fun_mat (const GetXCFunMat (function pointer void (*)(...))) – user-specified callback function to calculate
integral matrices of XC functional as well as its derivatives with
respect to different perturbations, see the callback function
get_xc_fun_mat()


	get_xc_fun_exp (const GetXCFunExp (function pointer void (*)(...))) – user-specified callback function to calculate
expectation values of XC functional as well as its derivatives with
respect to different perturbations, see the callback function
get_xc_fun_exp()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAddZeroOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx, get_zero_oper_contrib)

	Adds a zero-electron operator to the Hamiltonian.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Parameters

	
	num_pert_lab (const QInt) – number of all different perturbation labels that can
act on the zero-electron operator


	pert_labels (const QcPertInt*) – all the different perturbation labels involved


	pert_max_orders (const QInt*) – allowed maximal order of a perturbation described by
exactly one of the above different labels


	user_ctx (void*) – user-defined callback function context


	get_zero_oper_contrib (const GetZeroOperContrib (function pointer void (*)(...))) – user-specified function to calculate
contributions from the zero-electron operator, see the callback function
get_zero_oper_contrib()






	Return type

	QErrorCode










	
QErrorCode OpenRSPAssemble(open_rsp)

	Assembles the context of response theory calculations and checks its validity,
should be called before any function OpenRSPGet...(), otherwise the results
might be incorrect.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Return type

	QErrorCode










	
QErrorCode OpenRSPWrite(open_rsp, fp_rsp)

	Writes the context of response theory calculations.


	Parameters

	
	open_rsp (const OpenRSP*) – context of response theory calculations


	fp_rsp (FILE*) – file pointer






	Return type

	QErrorCode










	
QErrorCode OpenRSPGetRSPFun(open_rsp, ref_ham, ref_state, ref_overlap, num_props, len_tuple, pert_tuple, num_freq_configs, pert_freqs, kn_rules, r_flag, write_threshold, size_rsp_funs, rsp_funs)

	Gets the response functions for given perturbations.


	Parameters

	
	open_rsp (OpenRSP*) – context of response theory calculations


	ref_ham (const QcMat*) – Hamiltonian of referenced state


	ref_state (const QcMat*) – electronic state of referenced state


	ref_overlap (const QcMat*) – overlap integral matrix of referenced state


	num_props (const QInt) – number of properties to calculate


	len_tuple (const QInt*) – length of perturbation tuple for each property,
size is the number of properties (num_props)


	pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first
label of each property is the perturbation \(a\)


	num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props


	pert_freqs (const QReal*) – complex frequencies of each perturbation label (except
for the perturbation \(a\)) over all frequency configurations, size is
2 \(\times\)
(dot_product(len_tuple,num_freq_configs)-sum(num_freq_configs)), and
arranged as [num_freq_configs[i]][len_tuple[i]-1][2] (i runs from
0 to num_props-1) and the real and imaginary parts of each frequency
are consecutive in memory


	kn_rules (const QInt*) – number \(k\) for the \((k,n)\) rule 1 for each
property (OpenRSP will determine the number \(n\)), size is the
number of properties (num_props)


	r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not
load/use any existing restarting data and do not save any new restarting
data”, and 3 means “use any existing restarting data and extend existing
restarting data with all new restarting data”


	write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP


	size_rsp_funs (const QInt) – size of the response functions, equals to the sum of
the size of each property to calculate—which is the product of the
size of added perturbations (specified by the perturbation tuple
pert_tuple) and the number of frequency configurations
num_freq_configs for each property






	Var rsp_funs

	the response functions, size is 2 \(\times\)
size_rsp_funs and arranged as
[num_props][num_freq_configs][pert_tuple][2],
where the real and imaginary parts of the response functions
are consecutive in memory



	Vartype rsp_funs

	QReal*



	Return type

	QErrorCode










	1

	The description of the \((k,n)\) rule can be found, for instance,
in [Ringholm2014].






	
QErrorCode OpenRSPGetResidue(open_rsp, ref_ham, ref_state, ref_overlap, order_residue, num_excit, excit_energy, eigen_vector, num_props, len_tuple, pert_tuple, residue_num_pert, residue_idx_pert, num_freq_configs, pert_freqs, kn_rules, r_flag, write_threshold, size_residues, residues)

	Gets the residues for given perturbations.


	Parameters

	
	open_rsp (OpenRSP*) – context of response theory calculations


	ref_ham (const QcMat*) – Hamiltonian of referenced state


	ref_state (const QcMat*) – electronic state of referenced state


	ref_overlap (const QcMat*) – overlap integral matrix of referenced state


	order_residue (const QInt) – order of residues, that is also the length of
each excitation tuple


	num_excit (const QInt) – number of excitation tuples that will be used for
residue calculations


	excit_energy (const QReal*) – excitation energies of all tuples, size is
order_residue \(\times\) num_excit, and arranged
as [num_excit][order_residue]; that is, there will be
order_residue frequencies of perturbation labels (or sums
of frequencies of perturbation labels) respectively equal to
the order_residue excitation energies per tuple
excit_energy[i][:] (i runs from 0 to num_excit-1)


	eigen_vector (QcMat*[]) – eigenvectors (obtained from the generalized
eigenvalue problem) of all excitation tuples, size is order_residue
\(\times\) num_excit, and also arranged in memory
as [num_excit][order_residue] so that each eigenvector has
its corresponding excitation energy in excit_energy


	num_props (const QInt) – number of properties to calculate


	len_tuple (const QInt*) – length of perturbation tuple for each property,
size is the number of properties (num_props)


	pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first
label of each property is the perturbation \(a\)


	residue_num_pert (const QInt*) – for each property and each excitation energy
in the tuple, the number of perturbation labels whose sum of
frequencies equals to that excitation energy, size is order_residue
\(\times\) num_props, and arragned as [num_props][order_residue];
a negative residue_num_pert[i][j] (i runs from 0 to
num_props-1) means that the sum of frequencies of perturbation
labels equals to -excit_energy[:][j]


	residue_idx_pert (const QInt*) – for each property and each excitation energy
in the tuple, the indices of perturbation labels whose sum of
frequencies equals to that excitation energy, size is
sum(residue_num_pert), and arranged as [residue_num_pert]


	num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props


	pert_freqs (const QReal*) – complex frequencies of each perturbation label (except
for the perturbation \(a\)) over all frequency configurations and
excitation tuples, size is 2 \(\times\)
(dot_product(len_tuple,num_freq_configs)-sum(num_freq_configs))
\(\times\) num_excit, and arranged as
[num_excit][num_freq_configs[i]][len_tuple[i]-1][2] (i runs from
0 to num_props-1) and the real and imaginary parts of each
frequency are consecutive in memory; notice that the (sums of)
frequencies of perturbation labels specified by residue_idx_pert
should equal to the corresponding excitation energies for all frequency
configurations and excitation tuples


	kn_rules (const QInt*) – number \(k\) for the \((k,n)\) rule for each property
(OpenRSP will determine the number \(n\)), size is the number of
properties (num_props)


	r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not
load/use any existing restarting data and do not save any new restarting
data”, and 3 means “use any existing restarting data and extend existing
restarting data with all new restarting data”


	write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP


	size_residues (const QInt) – size of the residues, equals to the sum of the
size of each property to calculate—which is the product of the
size of added perturbations (specified by the perturbation tuple
pert_tuple), the number of excitation tuples (num_excit)
and the number of frequency configurations num_freq_configs
for each property






	Var residues

	the residues, size is 2 \(\times\)
size_residues and arranged as
[num_props][num_excit][num_freq_configs][pert_tuple][2], where
the real and imaginary parts of the residues are consecutive in memory



	Vartype residues

	QReal*



	Return type

	QErrorCode










	
QErrorCode OpenRSPDestroy(open_rsp)

	Destroys the context of response theory calculations, should be called at the end.


	Var open_rsp

	context of response theory calculations



	Vartype open_rsp

	OpenRSP*



	Return type

	QErrorCode












Functions of OpenRSP API (Fortran version)

Functions of OpenRSP API (Fortran) are similar to those of the C version, except
that an extra _f should be appended to each function. Other differences are
the (ii) argument types and (iii) callback functions (subroutines for Fortran).
The latter will be described in Chapter Callback Function Scheme. The
former relates to the convention of types in Fortran, please refer to the manual
of QcMatrix library [https://gitlab.com/bingao/qcmatrix] and the following
table for the convention:







	Type in OpenRSP

	Fortran





	struct OpenRSP

	type(OpenRSP)



	void* user_ctx

	type(C_PTR) user_ctx



	callback functions

	external subroutines






We also want to mention that users can also pass their own defined Fortran type
as the user-defined callback function context to OpenRSP, by encapsulated into
the type(C_PTR) user_ctx.







          

      

      

    

  

    
      
          
            
  
Callback Function Scheme

To use OpenRSP, users should also prepare different callback functions
needed by OpenRSP. These callback functions will be invoked by OpenRSP
during calculations to get integral matrices or expectation values of
different one- and two-electron operators, exchange-correlation functionals
and nuclear contributions, or to solve the linear response equation.
The callback functions are slightly different for C and Fortran users,
which will be described separately in this chapter.

It should be noted that the arguments in the following callback functions are
over complete. For instance, from the knowledge of perturbations
(oper_num_pert, oper_pert_labels and oper_pert_orders), the
dimension of integral matrices num_int in the callback function
get_one_oper_mat() can be computed.

Last but not least, users should be aware that:


	OpenRSP always ask for complex expectation values for different one-
and two-electron operators, exchange-correlation functionals and nuclear
contributions, and these values are presented in memory that the real
and imaginary parts of each value are consecutive. This affects:


	get_overlap_exp()


	get_one_oper_exp()


	get_two_oper_exp()


	get_xc_fun_exp()


	get_zero_oper_contrib()






	In order to reduce the use of temporary matrices and values, OpenRSP
requires that calculated integral matrices and expectation values
should be added to the returned argument. OpenRSP will zero the
entries of these matrices and expectation values at first. This
requirement affects the callback functions of one- and two-electron
operators, exchange-correlation functionals and nuclear contributions:


	get_overlap_mat() and get_overlap_exp()


	get_one_oper_mat() and get_one_oper_exp()


	get_two_oper_mat() and get_two_oper_exp()


	get_xc_fun_mat() and get_xc_fun_exp()


	get_zero_oper_contrib()









OpenRSP Callback Functions (C version)

Examples of C callback functions can be found in these files
tests/OpenRSP*Callback.c. The detailed information of these callback
functions are given as follows.


	
void get_pert_concatenation(pert_label, first_cat_comp, num_cat_comps, num_sub_tuples, len_sub_tuples, user_ctx, rank_sub_comps)

	User specified function for getting the ranks of components of
sub-perturbation tuples (with the same perturbation label) for given
components of the corresponding concatenated perturbation tuple, the last
argument for the function OpenRSPSetPerturbations().


	Parameters

	
	pert_label (const QcPertInt) – the perturbation label


	first_cat_comp (const QInt) – rank of the first component of the concatenated
perturbation tuple


	num_cat_comps (const QInt) – number of components of the concatenated perturbation
tuple


	num_sub_tuples (const QInt) – number of sub-perturbation tuples to construct the
concatenated perturbation tuple


	len_sub_tuples (const QInt*) – length of each sub-perturbation tuple, size is
num_sub_tuples; so that the length of the concatenated perturbation
is sum(len_sub_tuples)


	user_ctx (void*) – user-defined callback function context






	Var rank_sub_comps

	ranks of components of sub-perturbation tuples for
the corresponding component of the concatenated perturbation tuple,
i.e. num_cat_comps components starting from the one with rank
first_cat_comp, size is therefore num_sub_tuples \(\times\)
num_cat_comps, and arranged as [num_cat_comps][num_sub_tuples]



	Vartype rank_sub_comps

	QInt*



	Return type

	void









NOTE: get_pert_concatenation() will not be invoked in the current
release so that users can use a “faked” function for it.


	
void get_overlap_mat(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels, ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, num_int, val_int)

	User-specified callback function to calculate integral matrices of overlap
operator as well as its derivatives with respect to different perturbations,
the second last argument for the function OpenRSPSetOverlap().


	Parameters

	
	bra_num_pert (const QInt) – number of perturbations on the bra center


	bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert


	bra_pert_orders (const QInt*) – orders of perturbations on the bra center,
size is bra_num_pert


	ket_num_pert (const QInt) – number of perturbations on the ket center


	ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert


	ket_pert_orders (const QInt*) – orders of perturbations on the ket center,
size is ket_num_pert


	oper_num_pert (const QInt) – number of perturbations on the overlap operator 1


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert 2


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the product of the sizes
of perturbations on the bra, the ket and the overlap operator






	Var val_int

	the integral matrices to be added, size is num_int, and
arranged as [oper_pert][bra_pert][ket_pert]



	Vartype val_int

	QcMat*[]



	Return type

	void










	1

	Here perturbations on the overlap operator represent those acting on the
whole integral of the overlap operator, i.e. they can act on either the
bra center or the ket center by applying the rule of derivatives of a
product.



	2

	Only overlap integrals perturbed on the bra and/or the ket, and those
perturbed on the whole integral are needed in the calculations. It means
that, OpenRSP will only ask for overlap integrals either with
perturbations on the bra and/or ket (oper_num_pert=0), or with
perturbations on the whole overlap integral (bra_num_pert=0 and
ket_num_pert=0).






	
void get_overlap_exp(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels, ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified function for calculating expectation values of the overlap
operator and its derivatives, the last argument for the function
OpenRSPSetOverlap().


	Parameters

	
	bra_num_pert (const QInt) – number of perturbations on the bra center


	bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert


	bra_pert_orders (const QInt*) – orders of perturbations on the bra center,
size is bra_num_pert


	ket_num_pert (const QInt) – number of perturbations on the ket center


	ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert


	ket_pert_orders (const QInt*) – orders of perturbations on the ket center,
size is ket_num_pert


	oper_num_pert (const QInt) – number of perturbations on the overlap operator 3


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert


	num_dmat (const QInt) – number of atomic orbital (AO) based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of the expectation values, as the product of sizes of
perturbations on the bra, the ket, the overlap operator and the number
of density matrices (num_dmat)






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[num_dmat][oper_pert][bra_pert][ket_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	3

	Similar to the callback function get_overlap_mat(), OpenRSP will
only ask for expectation values either with perturbations on the bra
and/or ket (oper_num_pert=0), or with perturbations on the whole
overlap integral (bra_num_pert=0 and ket_num_pert=0).






	
void get_one_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the
one-electron operator and its derivatives, the second last argument for the
function OpenRSPAddOneOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the one-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the one-electron
operator, size is oper_num_pert


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the size of
perturbations that are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders






	Var val_int

	the integral matrices to be added, size is num_int



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_one_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified callback function to calculate expectation values of
one-electron operator as well as its derivatives with respect to different
perturbations, the last argument for the function
OpenRSPAddOneOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the one-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the one-electron
operator, size is oper_num_pert


	num_dmat (const QInt) – number of AO based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of expectation values, as the product of the size of
perturbations on the one-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of density matrices (num_dmat)






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as [num_dmat][oper_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_two_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the
two-electron operator and its derivatives, the second last argument for the
function OpenRSPAddTwoOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the two-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the two-electron
operator, size is oper_num_pert


	num_dmat (const QInt) – number of AO based density matrices


	dens_mat (QcMat*[]) – the AO based density matrices (\(\boldsymbol{D}\))
for calculating
\(\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D})\),
where \(\texttt{perturbations}\) are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders.


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, as the product of the size
of perturbations on the two-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of AO based density matrices (num_dmat)






	Var val_int

	the integral matrices to be added, size is num_int,
and arranged as [num_dmat][oper_pert]



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_two_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, dmat_len_tuple, num_LHS_dmat, LHS_dens_mat, num_RHS_dmat, RHS_dens_mat, user_ctx, num_exp, val_exp)

	User-specified callback function to calculate expectation values of
two-electron operator as well as its derivatives with respect to different
perturbations, the last argument for the function
OpenRSPAddTwoOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the two-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-electron
operator, size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the two-electron
operator, size is oper_num_pert


	dmat_len_tuple (const QInt) – length of different perturbation tuples of the
left-hand-side (LHS) and right-hand-side (RHS) AO based density
matrices passed; for instance, if the LHS density matrices passed
are (\(\boldsymbol{D}\), \(\boldsymbol{D}^{a}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{ab}\)), and the
RHS density matrices passed are (\(\boldsymbol{D}^{b}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{bc}\),
\(\boldsymbol{D}^{d}\)), then dmat_len_tuple equals to 4,
and that means we want to calculate
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D})\boldsymbol{D}^{b}]\),
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{a})\boldsymbol{D}^{c}]\),
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{b})\boldsymbol{D}^{bc}]\),
and \(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}^{ab})\boldsymbol{D}^{d}]\),
where \(\texttt{perturbations}\) are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders.


	num_LHS_dmat (const QInt*) – number of LHS AO based density matrices passed for
each LHS density matrix perturbation tuple, size is dmat_len_tuple;
sticking with the above example, num_LHS_dmat will be
{1, N_a, N_b, N_ab} where N_a, N_b and N_ab are
respectively the numbers of density matrices for the density matrix
perturbation tuples a, b and ab


	LHS_dens_mat (QcMat*[]) – the LHS AO based density matrices (\(\boldsymbol{D}_{\text{LHS}}\))
for calculating
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}_{\text{LHS}})\boldsymbol{D}_{\text{RHS}}]\),
size is the sum of num_LHS_dmat


	num_RHS_dmat (const QInt*) – number of RHS AO based density matrices passed for
each RHS density matrix perturbation tuple, size is dmat_len_tuple;
sticking with the above example, num_RHS_dmat will be
{N_b, N_c, N_bc, N_d} where N_b, N_c N_bc and N_d
are respectively the numbers of density matrices for the density matrix
perturbation tuples b, c, bc and d


	RHS_dens_mat (QcMat*[]) – the RHS AO based density matrices (\(\boldsymbol{D}_{\text{RHS}}\))
for calculating
\(\mathrm{Tr}[\boldsymbol{G}^{\texttt{perturbations}}(\boldsymbol{D}_{\text{LHS}})\boldsymbol{D}_{\text{RHS}}]\),
size is the sum of num_RHS_dmat


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of expectation values, as the product of the size
of perturbations on the two-electron operator (specified by
oper_num_pert, oper_pert_labels and oper_pert_orders) and
the number of pairs of LHS and RHS density matrices, and the number of
pairs of LHS and RHS density matrices can be computed as the dot product
of num_LHS_dmat and num_RHS_dmat






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[dmat_len_tuple][num_LHS_dmat][num_RHS_dmat][oper_pert][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_xc_fun_mat(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category, dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_int, val_int)

	User-specified function for calculating integral matrices of the XC
functional and its derivatives, the second last argument for the function
OpenRSPAddXCFun().


	Parameters

	
	xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional


	xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional, size is
xc_len_tuple


	num_freq_configs (const QInt) – the number of different frequency configurations to
be considered for the perturbation tuple specified by xc_pert_tuple


	pert_freq_category (const QInt*) – category of perturbation frequencies, size is
[num_freq_configs][xc_len_tuple]. Take \(\mathcal{E}^{gfff}\) as an
example, suppose we have four different frequency configurations:
“0.0,0.0,0.0,0.0” (\(3N\times 10\) unique elements),
“0.0,-0.2,0.1,0.1” (\(3N\times 18\) unique elements),
“0.0,-0,3,0.1,0.2” (\(3N\times 27\) unique elements) and
“0.0,-0.1,0.1,0.0” (\(3N\times 27\) unique elements), the
pert_freq_category argument would then be (1,1,1,1, 1,2,3,3,
1,2,3,4, 1,2,3,1).


	dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed; for instance, the complete density
matrix perturbation tuples (canonically ordered) for a property
\(\mathcal{E}^{abc}\) (i.e. the perturbation tuple xc_pert_tuple
is abc) are (\(\boldsymbol{D}\), \(\boldsymbol{D}^{a}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{ab}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{ac}\),
\(\boldsymbol{D}^{bc}\)), and with the \((0,2)\) rule, the
relevant density matrix perturbation tuples become (\(\boldsymbol{D}\),
\(\boldsymbol{D}^{b}\), \(\boldsymbol{D}^{c}\),
\(\boldsymbol{D}^{bc}\)) that gives the dmat_num_tuple as 4


	dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple; sticking with
the above example, the density matrix perturbation tuples passed are
(\(\boldsymbol{D}\), \(\boldsymbol{D}^{b}\),
\(\boldsymbol{D}^{c}\), \(\boldsymbol{D}^{bc}\)) and their
associated indices dmat_idx_tuple is {1, 3, 5, 7} because these
numbers correspond to the positions of the “\((k,n)\)-surviving”
perturbation tuples in the canonically ordered complete density matrix
perturbation tuples


	num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by
dmat_idx_tuple) and all frequency configurations, that is
num_freq_configs \(\times\sum_{\text{i}}N_{\text{i}}\), where
\(N_{\text{i}}\) is the number of density matrices for the density
matrix perturbation tuple dmat_idx_tuple[i] for a frequency
configuration


	dens_mat (QcMat*[]) – the collected AO based density matrices, size is
num_dmat, and arranged as [num_freq_configs][dmat_idx_tuple]


	user_ctx (void*) – user-defined callback function context


	num_int (const QInt) – number of the integral matrices, equals to the product of
the size of perturbations on the XC functional (specified by the
perturbation tuple xc_pert_tuple) and the number of different
frequency configurations num_freq_configs






	Var val_int

	the integral matrices to be added, size is num_int, and
arranged as [num_freq_configs][xc_pert_tuple]



	Vartype val_int

	QcMat*[]



	Return type

	void










	
void get_xc_fun_exp(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category, dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_exp, val_exp)

	User-specified function for calculating expectation values of the XC
functional and its derivatives, the last argument for the function
OpenRSPAddXCFun().


	Parameters

	
	xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional


	xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional, size is
xc_len_tuple


	num_freq_configs (const QInt) – the number of different frequency configurations to
be considered for the perturbation tuple specified by xc_pert_tuple


	pert_freq_category (const QInt*) – category of perturbation frequencies, size is
[num_freq_configs][xc_len_tuple].


	dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed


	dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple


	num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by
dmat_idx_tuple) and all frequency configurations, that is
num_freq_configs \(\times\sum_{\text{i}}N_{\text{i}}\), where
\(N_{\text{i}}\) is the number of density matrices for the density
matrix perturbation tuple dmat_idx_tuple[i] for a frequency
configuration


	dens_mat (QcMat*[]) – the collected AO based density matrices, size is
num_dmat, and arranged as [num_freq_configs][dmat_idx_tuple]


	user_ctx (void*) – user-defined callback function context


	num_exp (const QInt) – number of the expectation values, equals to the product of
the size of perturbations on the XC functional (specified by the
perturbation tuple xc_pert_tuple) and the number of different
frequency configurations num_freq_configs






	Var val_exp

	the expectation values to be added, size is 2
\(\times\) num_exp, and arranged as
[num_freq_configs][xc_pert_tuple][2]



	Vartype val_exp

	QReal*



	Return type

	void










	
void get_zero_oper_contrib(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, size_pert, val_oper)

	User-specified callback function to calculate contributions from the
zero-electron operator, the last argument for the function
OpenRSPAddZeroOper().


	Parameters

	
	oper_num_pert (const QInt) – number of perturbations on the zero-electron operator


	oper_pert_labels (const QcPertInt*) – labels of perturbations on the zero-electron operator,
size is oper_num_pert


	oper_pert_orders (const QInt*) – orders of perturbations on the zero-electron operator,
size is oper_num_pert


	user_ctx (void*) – user-defined callback function context


	size_pert (const QInt) – size of the perturbations on the zero-electron operator






	Var val_oper

	contributions from the zero-electron operator to be added,
arranged as [size_pert][2]



	Vartype val_oper

	QReal*



	Return type

	void










	
void get_linear_rsp_solution(num_pert, num_comps, num_freq_sums, freq_sums, RHS_mat, user_ctx, rsp_param)

	User-specified callback function of linear response equation solver, the
last argument for the function OpenRSPSetLinearRSPSolver().


	Parameters

	
	num_pert (const QInt) – number of different perturbations on the right hand side of
the linear response equation


	num_comps (const QInt*) – number of components of each perturbation, size is
num_pert


	num_freq_sums (const QInt*) – for each perturbation, number of complex frequency
sums on the left hand side of the linear response equation, size is
num_pert


	freq_sums (const QReal*) – the complex frequency sums on the left hand side of the
linear response equation, size is twice of the sum of num_freq_sums,
the real and imaginary parts of each frequency sum are consecutive in
memory


	RHS_mat (QcMat*[]) – RHS matrices, size is the dot product of num_comps and
num_freq_sums, and index of num_freq_sums runs faster in memory


	user_ctx (void*) – user-defined callback function context






	Var rsp_param

	solved response parameters, size is the dot product of
num_comps and num_freq_sums, and index of num_freq_sums runs
faster in memory



	Vartype rsp_param

	QcMat*[]



	Return type

	void












OpenRSP Callback Subroutines (Fortran version)

The callback subroutines of Fortran codes take almost the exact arguments as
the callback functions of C codes. One difference is the type convention
between C and Fortran, which has been discussed in Secion
Functions of OpenRSP API (Fortran version).  Moreover, the pointers of basic types
(integer and real numbers) in the C codes should be converted to corresponding
array in Fortran. The array of QcMat pointers should be converted to an
array of type(QcMat) in Fortran. Last, the user-defined callback
function/subroutine context should be replaced by type(C_PTR).

We will develop Fortran unit testing in next release. For the time being,
interested users can refer to LSDalton for examples of Fortran callback
subroutines.







          

      

      

    

  

    
      
          
            
  
Compile OpenRP

Before compiling OpenRSP, you need to make sure the following programs are
installed on your computer:


	Git,


	CMake (\(\ge2.8\)),


	C, C++ (if C++ APIs built) and/or Fortran 2003 (if Fortran APIs built) compilers,


	HDF 5 (\(\ge1.8\)) if it is enabled in QcMatrix library,


	BLAS and LAPACK libraries, and


	QcMatrix library [https://gitlab.com/bingao/qcmatrix].




For the time being, only CMake can be used to compile OpenRSP. In general,
OpenRSP should be compiled together with the host programs. See for example the
LSDalton program.

You can also compile OpenRSP alone to be familiar with how it works. But no
real calculations will be performed, all the callback functions in the OpenRSP
unit testing only return pre-defined data or read data from file. Let us
assume that you want to compile the library in directory build, you could
invoke the following commands:

mkdir build
cd build
ccmake ..
make





During the step ccmake, you need to set some parameters appropriately for
the compilation. For instance, if you enable OPENRSP_TEST_EXECUTABLE, some
executables for the test suite will be built and can run after compilation. So
that you are able to check if OpenRSP has been successfully compiled. A
detailed list of the parameters controlling the compilation is given in the
following table:


OpenRSP CMake parameters






	CMake parameters

	Description

	Default





	OPENRSP_BUILD_WEB

	Build OpenRSP from WEB files (only useful for developers)

	OFF



	OPENRSP_FORTRAN_API

	Build Fortran 2003 API

	OFF



	OPENRSP_PERT_LABEL_BIT

	Number of bits for a perturbation label (used for perturbation free scheme)

	10



	OPENRSP_TEST_EXECUTABLE

	Build test suite as excutables (otherwise, as functions in the library)

	ON



	OPENRSP_USER_CONTEXT

	Enable user context in callback functions

	OFF



	OPENRSP_ZERO_BASED

	Zero-based numbering

	ON



	QCMATRIX_HEADER_DIR

	Directory of header files of QcMatrix library

	None



	QCMATRIX_LIB

	Name of QcMatrix library with absolute path

	None



	QCMATRIX_MODULE_DIR

	Directory of Fortran modules of QcMatrix library

	None










          

      

      

    

  

    
      
          
            
  
Future Plans

Here are some plans for the next release or even later stage.


	Update/rewrite Daniel’s code documentation for developers, based on the current
implementation of the “OpenRSP response” part (see openrsp_framework)


	Change or abandon literate programming approach (because of extra work on
maintenance and further development)


	Add more unit tests (currently only polarizability)


	Change API codes to C++


	Add Fortran unit testing


	Implement symbolic computations (see Symbolic Computations (not implemented))


	Implement perturbation free scheme (see Perturbation Free Scheme (not implemented))


	Add response theory based on molecular orbital coefficients and/or coupled cluster








          

      

      

    

  

    
      
          
            
  
OpenRSP Notations and Conventions

The following notations and conventions will be used through the OpenRSP
program and the documentation:


	Perturbation

	is described by a label, a complex frequency and its order. Any two
perturbations are different if they have different labels, and/or
frequencies, and/or orders.



	Perturbation label

	An integer distinguishing one perturbation from others; all different
perturbation labels involved in the calculations should be given by calling
the application programming interface (API)
OpenRSPSetPerturbations(); OpenRSP will stop if there is any
unspecified perturbation label given afterwards when calling the APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue().



	Perturbation order

	Each perturbation can acting on molecules once or many times, that is the
order of the perturbation.



	Perturbation components and their ranks

	Each perturbation may have different numbers of components for their
different orders, the position of each component is called its rank.

For instance, there will usually be \(x,y,z\) components for the electric
dipole perturbation, and their ranks are {0,1,2} in zero-based numbering,
or {1,2,3} in one-based numbering.

The numbers of different components of perturbations and their ranks are
totally decided by the host program. OpenRSP will get such information from
callback functions, that is OpenRSP itself is a perturbation free library.

NOTE: the above perturbtion free scheme is however not implemented for
the current release so that OpenRSP will use its own internal representations
for different perturbations.



	Perturbation tuple

	An ordered list of perturbation labels, and in which we further require that
identical perturbation labels should be consecutive. That means the tuple
\((a,b,b,c)\) is allowed, but \((a,b,c,b)\) is illegal because the
identical labels \(b\) are not consecutive.

As a tuple:


	Multiple instances of the same labels are allowed so that
\((a,b,b,c)\ne(a,b,c)\), and


	The perturbation labels are ordered so that \((a,b,c)\ne(a,c,b)\)
(because their corresponding response functions or residues are in
different shapes).




We will sometimes use an abbreviated form of perturbation tuple as, for
instance \(abc\equiv(a,b,c)\).

Obviously, a perturbation tuple \(+\) its corresponding complex
frequencies for each perturbation label can be viewed as a set of
perturbations, in which the number of times a label (with the same frequency)
appears is the order of the corresponding perturbation.



	Category of perturbation frequencies

	We use different integers for distinguishing different values of frequencies
within a frequency configuration. The category arrary is determined by:


	For each frequency configuration, we start at the first perturbation and
let its frequency value be designated number 1, then


	For the next perturbation,


	If its frequency value corresponds to a frequency value encountered
previously in this frequency, then use the same designation as for that
previously encountered frequency value, or


	If its frequency value has not been encountered before, then let that
frequency value be designated with the first unused number;






	Continue like this until the end of the perturbation tuple;


	Start the numbering over again at the next frequency configuration.






	Canonical order

	
	In OpenRSP, all perturbation tuples are canonically orderd according
to the argument pert_tuple in the API OpenRSPGetRSPFun()
or OpenRSPGetResidue(). For instance, when a perturbation
tuple \((a,b,c)\) given as pert_tuple in the API
OpenRSPGetRSPFun(), OpenRSP will use such order (\(a>b>c\))
to arrange all perturbation tuples inside and sent to the callback functions.


	Moreover, a collection of several perturbation tuples will also follow
the canonical order. For instance, a collection of all possible perturbation
tuples of labels \(a,b,c,d\) are
\((0,a,b,ab,c,ac,bc,abc,d,ad,bd,abd,cd,acd,bcd,abcd)\), where
\(0\) means unperturbed quantities that is always the first one
in the collection.

The rules for generating the above collection are:


	When taking a new perturbation into consideration, always do so in
alphabetical order (and begin with the empty set);


	When taking a new perturbation into consideration, the new subsets are
created by making the union of all previous subsets (including the
empty set) and the new perturbation (putting the new perturbation
at the end).










	Perturbation \(a\)

	The first perturbation label in the tuple sent to OpenRSP APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue(), are the
perturbation \(a\) [Thorvaldsen2008].



	Perturbation addressing

	
	The addressing of perturbation labels in a tuple is decided by
(i) the argument pert_tuple sent to the API OpenRSPGetRSPFun()
or OpenRSPGetResidue(), and (ii) the canonical order that
OpenRSP uses.


	The addressing of components per perturbation (several consecutive
identical labels with the same complex frequency) are decided by
the host program (NOTE: as mentioned above, the perturbtion free
scheme is not implemented for the current release so that OpenRSP will use
its own internal subroutines to compute the address of components per
perturbation).


	The addressing of a collection of perturbation tuples follows the
canonical order as aforementioned.




Therefore, the shape of response functions or residues is mostly
decided by the host program. Take \(\mathcal{E}^{abbc}\) as an
example, its shape is \((N_{a},N_{bb},N_{c})\), where \(N_{a}\)
and \(N_{c}\) are respectively the numbers of components of
the first order of the perturbations \(a\) and \(c\), and
\(N_{bb}\) is the number of components of the second order of
the perturbation \(b\), and


	In OpenRSP, we will use notation [a][bb][c] for \(\mathcal{E}^{abbc}\),
where the leftmost index (a) runs slowest in memory and the
rightmost index (c) runs fastest. However, one should be
aware that the results are still in a one-dimensional array.


	If there two different frequencies for the perturbation \(b\),
OpenRSP will return [a][b1][b2][c], where b1 and b2
stand for the components of the first order of the perturbation
\(b\).


	The notation for a collection of perturbation tuples (still in a
one-dimensional array) is {1,[a],[b],[a][b],[c],[a][c],[b][c],[a][b][c]}
for \((0,a,b,ab,c,ac,bc,abc)\), where as aforementioned the
first one is the unperturbed quantities.












          

      

      

    

  

    
      
          
            
  
Unit Testing

After successfully building OpenRSP (see Compile OpenRP), we
recommend users perform the unit testing of OpenRSP.

If OPENRSP_TEST_EXECUTABLE is enabled, you will have an executable
openrsp_c_test after successfully building OpenRSP. Run this executable for
unit testing.

If OPENRSP_TEST_EXECUTABLE is disabled, you will need to call the function


	
QErrorCode OpenRSPTest(FILE *fp_log)

	



to perform the unit testing.





          

      

      

    

  

    
      
          
            
  
Getting Started

OpenRSP is a computer library that uses recursive routines [Ringholm2014] to
identify and assemble contributions to molecular properties (“response
functions” or “residues”) based on the density matrix-based response theory
[Thorvaldsen2008].

Therefore, OpenRSP extensively bases on the matrix operations, which are built
on top of the QcMatrix library [https://gitlab.com/bingao/qcmatrix]. Please
refer to the manual and tutorial of this library if you are not familiar with
it.

Briefly, to use OpenRSP, one has to provide:


	perturbations,


	functions for evaluating overlap integrals,


	different one-electron operators,


	different two-electron operators,


	different exchange-correlation functionals,


	different zero-electorn operators, like nuclear Hamiltonian,


	linear response equation solver.




The reference state (usually the ground state), and excited states (if
calculating residues) are sent to OpenRSP APIs as input arguments.

Within the above ingredients, one does not need to provide both one-electron
operators, two-electron operators and exchange-correlation functionals.

Indeed only one of them is needed for OpenRSP to calculate the electron
contributions to the response functions or residues. For instance, only one-
and two-electron operators are needed for the Hartree-Fock calculations.

One therefore only needs to provide OpenRSP the necessary operators for their
interested Hamiltonian, which is done by providing appropriate callback
functions to OpenRSP:


	rank of a perturbation component (not invoked by the current release),


	(perturbed) overlap integrals,


	(perturbed) one-electron operators,


	(perturbed) two-electron operators,


	(perturbed) exchange-correlation functionals,


	(perturbed) zero-eletron operators,


	response parameters solved from the linear response equation.




The use of callback functions makes one freely choose the appropriate functions
during runtime to calculate molecular properties.

After the necessary ingredients properly provided, one can invoke OpenRSP APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue() to calculate response
functions or residues.


Perturbation free

Although it is not available in the current release, we would like to mention
that, the use of callback function to determine the rank of a perturbation
component (see definition of perturbation component and rank in
chapter_notations_and_conventions) can make OpenRSP a perturbation
free library in the future. That is:


	OpenRSP does not need to know the meaning of each perturbation.
All perturbations are treated equally as symbols/variables in
OpenRSP for differentiation.


	Only the order of perturbation labels matters, that OpenRSP will
follow to generate necessary perturbation tuples (see definition of
perturbation label and tuple in chapter_notations_and_conventions)
during calculations.


	These labels are sent to OpenRSP by the APIs OpenRSPGetRSPFun()
or OpenRSPGetResidue() during runtime.







Requirements on callback functions

OpenRSP further has the following requirements on the callback functions that
users should be keep in mind (more detail can be found at the beginning of
chapter_callback_functions):


	OpenRSP always ask for complex expectation values for different zero-,
one- and two-electron operators, and exchange-correlation functionals, and
these values are presented in memory that the real and imaginary parts of
each value are consecutive.


	OpenRSP requires that calculated integral matrices and expectation values
should be added to the returned argument. OpenRSP will zero the entries
of these matrices and expectation values at first.

This requirement affects the callback functions of zero-, one- and
two-electron operators, and exchange-correlation functionals.








Typical procedure of using OpenRSP

To summarize, you first need to declare the OpenRSP context and error handler
(C code) for using OpenRSP:

#inclde "OpenRSP.h"
OpenRSP open_rsp;
QErrorCode ierr;





or (Fortran code):

use OpenRSP_f
type(OpenRSP) open_rsp
integer(kind=4) ierr





Afterwards, you can creat the OpenRSP context (we only show the C code here,
because the difference between C and Fortran is not much):

ierr = OpenRSPCreate(&open_rsp, num_atoms);
if (ierr!=QSUCCESS) {
    /* error handling */
}





NOTE: the last argument num_atoms in the API OpenRSPCreate() is
the number of atoms, which will be removed after the perturbation free
scheme implemented in OpenRSP.

After creating the OpenRSP context, users could set:


	Perturbations involved in calculations by calling
OpenRSPSetPerturbations();


	Electronic Hamiltonian, by calling


	OpenRSPSetOverlap(),


	OpenRSPAddOneOper(),


	OpenRSPAddTwoOper(),


	OpenRSPAddXCFun();




Note that users may not need all the above 4 APIs. For instance,
Hartree-Fock calculations do not need to call OpenRSPAddXCFun().



	Zero-electron operator, like nuclear Hamiltonian by calling
OpenRSPAddZeroOper();


	Linear response equation solver by calling
OpenRSPSetLinearRSPSolver().




After setting the above information, users must call
OpenRSPAssemble() to examine if the context of OpenRSP has been set
correctly. Otherwise, calculations could have problems during running.

Afterwards, users could use OpenRSPWrite() to write the OpenRSP context
(in a readable format) into a file. If the file exists, the OpenRSP will append
its context to the file.

This file can be read and sent to the OpenRSP authors if there is anything
wrong during calculations.

If everything is OK, users can then:


	call OpenRSPGetRSPFun() to calculate response functions, and/or


	call OpenRSPGetResidue() to calculate residues.




After all calculations performed, users should call OpenRSPDestroy() to
release the memory used by the OpenRSP context.

The above is a typical procedure of using OpenRSP. Users can also refer to the
unit testing codes in the directory tests (C version), to learn how the
callback functions can be prepared.

In the following, we will describe how to prepare the above ingredients
respectively, and perform the calculations step by step.

Before proceeding, to make yourself familiar with OpenRSP, please refer to
chapter_notations_and_conventions for the notations and conventions used
through the OpenRSP and this tutorial.







          

      

      

    

  

    
      
          
            
  
One-Electron Operators

The strategy of treating zero-, one- and two-electron operators, as well as
exchange-correlation functionals is different from that of overlap operator and
linear response equation solver. For the latter, the OpenRSP API will be
usually called once to set up the approprite callback functions.

Taking the one-electron operators as an example, host programs may have
different one-electron functions for different operators. If they do not want
to provide OpenRSP a general callback function, instead they can call the
API OpenRSPAddOneOper() several times to add several one-electron
operators to the electronic Hamiltonian.

Inside OpenRSP, these one-electron operators will be saved in a linked list, in
which each node corresponds to a one-electron operator.

The arguments of this API are similar to those of the overlap operator
OpenRSPSetOverlap(), and has been described in
chapter_api_reference.

Moreover, the arguments num_pert_lab, pert_labels and
pert_max_orders will be also used in a similar way as those of the overlap
operator, that OpenRSP will not invoke the callback functions if a perturbation
tuple already result in zero one-electron integrals.

The callback functions get_one_oper_mat() and
get_one_oper_exp() are presented in chapter_callback_functions.
Users can also find examples in the OpenRSP unit testing (files in the
directory tests).





          

      

      

    

  

    
      
          
            
  
OpenRSP Context

In order to use OpenRSP, C users should first include the header file of
OpenRSP in their codes:

#inclde "OpenRSP.h"





while Fortran users should use the OpenRSP module:

use OpenRSP_f





All the OpenRSP APIs (application programming interface) can be invoked as:

OpenRSP open_rsp;
QErrorCode ierr;
ierr = OpenRSP...(&openrsp, ...);





or for Fortran users as:

type(OpenRSP) open_rsp
integer(kind=4) ierr
ierr = OpenRSP..._f(open_rsp, ...)





where open_rsp contains the context of calculations by the OpenRSP, and is
always of the first argument for all the APIs.

The ierr contains error information that one should check if it equals to
QSUCCESS (constant defined in QcMatrix library [https://gitlab.com/bingao/qcmatrix]). If not, there was error happened in
the invoked OpenRSP API, and one should stop the calculations and check the
error message.


Basic OpenRSP APIs

There are several OpenRSP APIs only take the OpenRSP context open_rsp as
the argument and must be invoked by the users during calculations:


	OpenRSPCreate()


	OpenRSPAssemble()


	OpenRSPDestroy()




in which OpenRSPCreate() and OpenRSPDestroy() must be called
respectively at the beginning and at the end of the calculations, to
create and destroy the context of the OpenRSP library. They should be called
only once.

NOTE: the last argument num_atoms in the API OpenRSPCreate() is
the number of atoms, which will be removed after the perturbation free
scheme implemented in OpenRSP, i.e., after the API
OpenRSPSetPerturbations() and its related core parts of OpenRSP are
implemented.

The API OpenRSPAssemble() should be called after all ingredients
(see Getting Started) have been set, and before any response
function or residue calculation.

This API will examine if the context of OpenRSP has been set correctly, and
must be called at least once.




Check the OpenRSP context

Often users would like to see how the OpenRSP context has been set in a
readable manner, that can be done by calling OpenRSPWrite().

The OpenRSP context will be written (or more exactly appended) into the end
of the file pointed by fp_rsp, which can be read and sent to the OpenRSP
authors if there is anything wrong.

This API can be called many times as you want.




Fortran users

Functions of OpenRSP API (Fortran) are similar to those of the C version,
except that an extra _f should be appended to each function.

Other differences have been described in section_fortran_convention.







          

      

      

    

  

    
      
          
            
  
Overlap Operator

During calculations, OpenRSP will invoke host program’s callback functions to
calculate (perturbed) overlap integrals
\(\left\langle\tilde{\chi}_{\mu}^{a_{\mu}b_{\mu}\cdots}\left| %
\tilde{\chi}_{\nu}^{a_{\nu}b_{\nu}\cdots}\right.\right\rangle^{ab\cdots}\) and
expectation values (by contracting with an array of density matrices sent by
OpenRSP), where \(a_{\mu}b_{\mu}\cdots\), \(a_{\nu}b_{\nu}\cdots\) and
\(ab\cdots\) are respectively perturbation tuples on the bra, the ket and
overlap integrals, which are generated by OpenRSP in its recursive routine.

However, one should note that OpenRSP will only ask for
\(\left\langle\tilde{\chi}_{\mu}^{a_{\mu}b_{\mu}\cdots}\left| %
\tilde{\chi}_{\nu}^{a_{\nu}b_{\nu}\cdots}\right.\right\rangle\) or
\(\left\langle\tilde{\chi}_{\mu}\left|\tilde{\chi}_{\nu}\right.\right\rangle^{ab\cdots}\)
instead of the more general case as aforementioned.

To send such callback functions and different perturbation labels that can act
as perturbations on the basis sets to OpenRSP, users can call the OpenRSP API
OpenRSPSetOverlap().

In this API, arguments num_pert_lab, pert_labels and
pert_max_orders will be used in such a way that OpenRSP will not invoke the
callback functions if the perturbation tuples (\(a_{\mu}b_{\mu}\cdots\),
\(a_{\nu}b_{\nu}\cdots\) and \(ab\cdots\)) result in zero overlap
integrals.

Other two arguments, the callback functions get_overlap_mat() and
get_overlap_exp() are presented in chapter_callback_functions.
Users can refer to this chapter and the OpenRSP unit testing (files in
tests) to prepare their own callabck functions and to use this API.





          

      

      

    

  

    
      
          
            
  
Perturbations

NOTE: although the perturbation free scheme is not fully implemented, users
still need to set up information of perturbations using the API
OpenRSPSetPerturbations() except that the callback function
get_pert_concatenation() can be a faked one.

To make OpenRSP a perturbation free library:


	The components of each perturbation, i.e., the number of components and
their arrangement in memory are totally decided by the host program, and
OpenRSP gets such information from callback functions.


	OpenRSP will follow the order of perturbation labels sent by the APIs
OpenRSPGetRSPFun() or OpenRSPGetResidue() during runtime, to
generate necessary perturbation tuples during calculations, and such a order
is named as canonical order.


	OpenRSP will also use canonical order when preparing a collection of
perturbation tuples, that for instance could be sent to the callback
functions of exchange-correlation functionals.




All these can be done by first calling the API
OpenRSPSetPerturbations() to set up all the different perturbation
labels involved in calculations.

For instance, if we have electric, magnetic and geometric perturbations in our
calculations. We will use three different integers to distinguish them, let us
say EL, MAG and GEO.

Our integral codes can only handle EL to the first order, MAG to the
second order and GEO to the third order.

Our codes use the redundant format of derivatives, i.e. there will be 9
components for the second order magnetic derivatives
(\(xx,xy,xz,yx,yy,yz,zx,zy,zz\)) instead of 6 (\(xx,xy,xz,yy,yz,zz\)),
and \(9N_{\text{atoms}}^{2}\) and \(27N_{\text{atoms}}^{3}\) second and
third order geometric derivatives, where \(N_{\text{atoms}}\) is the number
of atoms.

Therefore, we can set:


	num_pert=3,


	pert_labels[3]={EL,MAG,GEO},


	pert_max_orders[3]={1,2,3},


	pert_num_comps[6]={3, 3,9, 3*N,9*N*N,27*N*N*N},




where N is the number of atoms and should be defined. So pert_num_comps
actually tells OpenRSP the number of components of different perturbation
labels from the first order up to their maximum order.

The last argument is a callback function get_pert_concatenation() for
getting the ranks of components of sub-perturbation tuples (with same
perturbation label) for given components of the corresponding concatenated
perturbation tuple. Here the name of the function can be anything else.

This callback function has been discussed in chapter_callback_functions.
Here we will show an example.

For instance, during the calculations, OpenRSP may need to calculate quantities
of the second order magnetic derivatives from those of the first order
(redundant format):


	\(x+x\rightarrow xx\), \(x+y\rightarrow xy\), \(x+z\rightarrow xz\),


	\(y+x\rightarrow yx\), \(y+y\rightarrow yy\), \(y+z\rightarrow yz\),


	\(z+x\rightarrow zx\), \(z+y\rightarrow zy\), \(z+z\rightarrow zz\),




or, if we rank these derivatives (zero-based numbering):


	\(0+0\rightarrow 0\), \(0+1\rightarrow 1\), \(0+2\rightarrow 2\),


	\(1+0\rightarrow 3\), \(1+1\rightarrow 4\), \(1+2\rightarrow 5\),


	\(2+0\rightarrow 6\), \(2+1\rightarrow 7\), \(2+2\rightarrow 8\).




That means, if OpenRSP sends:


	pert_label=MAG,


	first_cat_comp=0,


	num_cat_comps=9,


	num_sub_tuples=2,


	len_sub_tuples[2]={1,1},




the callback function get_pert_concatenation() should return:
rank_sub_comps[2*9]={0,0, 0,1, 0,2, 1,0, 1,1, 1,2, 2,0, 2,1, 2,2}, or other
correct way to construct the second derivatives.

The use of the callback function get_pert_concatenation() makes it
possible for the hose program to choose different formats of derivatives.

For instance, if the host program use non-redundant format of derivatives, i.e.
there will be 6 components for the second order magnetic derivatives
(\(xx,xy,xz,yy,yz,zz\)), and
\(\frac{3N_{\text{atoms}}(3N_{\text{atoms}}+1)}{2}\) and
\(\frac{3N_{\text{atoms}}(3N_{\text{atoms}}+1)(3N_{\text{atoms}}+2)}{6}\)
second and third order geometric derivatives.

For the non-redundant second order magnetic derivatives, OpenRSP could send:


	pert_label=MAG,


	first_cat_comp=0,


	num_cat_comps=6,


	num_sub_tuples=2,


	len_sub_tuples[2]={1,1},




and get:

rank_sub_comps[2*6]={0,0, 0,1, 0,2, 1,1, 1,2, 2,2}.

Therefore, the use of the callback function get_pert_concatenation()
makes host programs fully control the components of different derivatives, and
makes OpenRSP perturbation free.

Last, the second last argument usr_ctx is the user defined context for the
callback function get_pert_concatenation(). This argument can be used
to pass additional but necessary information to the callback function, and
OpenRSP will not touch it.





          

      

      

    

  

    
      
          
            
  
Residues

The residues can be calculated by calling OpenRSPGetResidue(). It can
be noted that this API takes similar arguments as those of
OpenRSPGetRSPFun(). Users can therefore refer to
chapter_response_function for the explanation of the arguments with the
same names, or chapter_api_reference for the description of
OpenRSPGetResidue().

In the following, we will focus on the arguments that do not present in
response function calculations, as grouped into 3 categories:


	order_residue,


	num_excit, excit_energy and eigen_vector,


	residue_num_pert and residue_idx_pert.




The arguments size_residues and residues are merely the size of the
calculated residues and the residues, whose description can be found in
chapter_api_reference.

First, order_residue is simply the order of residues. That is, there will
be order_residue frequencies (in pert_freqs) of perturbation labels (or
sums of frequencies of perturbation labels) respectively equal to the
order_residue excitation energies.

The excitation energies will be in excit_energy, corresponding to
order_residue excitations (we say an “excitation tuple”). Considering the
possibility that calculations of the same order residues several “excitation
tuples” may save time, OpenRSP will therefore accept for multiple “excitation
tuples” for residue calculations.

Let us make an example: we want to calculate double residuces, that is,
order_residue=2, and we have two excited states r1 and s1 (or an
excitation tupe (r1,s1)) that two (sums of) frequencies of perturbation
labels will equal to their excitation energies.

Now if we have other two excited states (r2,s2) and (r3,s3) that will
be used for double residue calculations, we could set num_excit=3 for the
number of excitation tuples used in calculations.

The excit_energy and eigen_vector respetively contain excitation
energies and eigenvectors of all the excited states:


	excit_energy[order_residue*num_excit]={energy_r1,energy_s1, energy_r2,energy_s2, energy_r3,energy_s3},


	eigen_vector[2*3]={eigvec_r1,eigvec_s1, eigvec_r2,eigvec_s2, eigvec_r3,eigvec_s3}.




The last group of arguments residue_num_pert and residue_idx_pert
contain the information, per property, of perturbation labels whose (sums
of) frequencies equal to the excitation energies.

For instance, we have two properties to calculate num_props=2, and the
lengths of perturbation tuples for them are len_tuple[2]={4,5}.

For the first property, we want (for every excitation tuple):


	frequency of the first perturbation label \(=\) the first excitation energy,


	frequency of the third perturbation label \(=\) the second excitation energy.




For the second property, we want (for every excitation tuple):


	frequency of the first perturbation label \(=\) the first excitation energy,


	sums of frequencies of the third and fourth perturbation labels \(=\) the
second excitation energy.




So, we will have:


	residue_num_pert[order_residue*num_props]={1,1, 1,2},


	residue_idx_pert[sum(residue_num_pert)]={1,3, 1,3,4},




or in zero-based numbering:


	residue_num_pert[order_residue*num_props]={1,1, 1,2},


	residue_idx_pert[sum(residue_num_pert)]={0,2, 0,2,3}.




Last but not least, it is apparent that the (sums of) frequencies
(pert_freqs) of perturbation labels specified by residue_idx_pert
should equal to the corresponding excitation energies for all frequency
configurations and excitation tuples.





          

      

      

    

  

    
      
          
            
  
Response Functions

The response functions can be calculated by calling OpenRSPGetRSPFun().

Suppose we want to calculate the polarizability \(\alpha\) and the first
hyperpolarizability \(\beta\) at different frequencies:

\(\alpha(-\omega_{1},\omega_{1})\), \(\alpha(-\omega_{2},\omega_{2})\),
\(\beta(-\omega_{3}-\omega_{4},\omega_{3},\omega_{4})\),
\(\beta(-\omega_{5}-\omega_{6},\omega_{5},\omega_{6})\),
\(\beta(-\omega_{7}-\omega_{8},\omega_{7},\omega_{8})\).


	That means we have two properties to calculate (\(\alpha\) and
\(\beta\)) so we should set num_props=2.




The perturbation tuples for \(\alpha\) and \(\beta\) are
presented by integers, let them be {EL,EL} and {EL,EL,EL},
so that


	len_tuple[2]={2,3}, and


	pert_tuple[5]={EL,EL,EL,EL,EL}, where the first two are for
\(\alpha\) and the last three for \(\beta\).




There are two frequency configurations for \(\alpha\) (\(\omega_{1}\)
and \(\omega_{2}\)) and three for \(\beta\)
(\(\{\omega_{3},\omega_{4}\}\), \(\{\omega_{5},\omega_{6}\}\) and
\(\{\omega_{7},\omega_{8}\}\)), as such:


	num_freq_configs[2]={2,3},


	pert_freqs[8]=\(\{\omega_{1},\omega_{2},\omega_{3},\omega_{4},\omega_{5},\omega_{6},\omega_{7},\omega_{8}\}\),




and the frequency of perturbation \(a\) is not needed.

The argument kn_rules contains the number \(k\) of \((k,n)\) rule
for each property. If we choose \((0,1)\) and \((1,1)\) rules for
\(\alpha\) and \(\beta\) respectively, we have kn_rules[2]={0,1}.

The choice of appropriate \((k,n)\) rule usually affect the efficiency of
calculations. Detailed discussion of the \((k,n)\) rule can be found, for
instance in [Thorvaldsen2008], [Ringholm2014], and


	Kristensen2008

	Kasper Kristensen, Poul Jørgensen, Andreas J. Thorvaldsen,
and Trygve Helgaker, J. Chem. Phys. 129, 214103 (2008).





r_flag and write_threshold respectively controls the restarting scheme
and threshold of tensor element writing (by OpenRSP). Please refer to
chapter_api_reference for more detail.

The calculated results are in rsp_funs, whose size is twice of
size_rsp_funs (because OpenRSP represents a complex number by its real and
imaginary parts).

The size_rsp_funs equals to the sum of the size of each property to
calculate. In this example, if we use non-redundant representation of
perturbations, \(\alpha\) will have 6 components (\(\alpha_{xx}\),
\(\alpha_{xy}\), \(\alpha_{xz}\), \(\alpha_{yy}\),
\(\alpha_{yz}\), \(\alpha_{zz}\)), and \(\beta\) 10 components
(\(\beta_{xxx}\), \(\beta_{xxy}\), \(\beta_{xxz}\),
\(\beta_{xyy}\), \(\beta_{xyz}\), \(\beta_{xzz}\),
\(\beta_{yyy}\), \(\beta_{yyz}\), \(\beta_{yzz}\),
\(\beta_{zzz}\)).

Further considering the number of frequency configurations of \(\alpha\)
(2) and \(\beta\) (3), we have size_rsp_funs as

\(6\times2\) (for \(\alpha\)) \(+\) \(10\times3\) (for
\(\beta\)) \(=42\).

The results rsp_funs are in a one-dimensional array, and are arranged in
memory as:

[num_props][num_freq_configs][pert_tuple][2],

that is (where the frequency of perturbation \(a\) is neglected):


[ \(\mathrm{Re}(\alpha_{xx}(\omega_{1}))\),
\(\mathrm{Im}(\alpha_{xx}(\omega_{1}))\),
\(\cdots\),
\(\mathrm{Re}(\alpha_{zz}(\omega_{1}))\),
\(\mathrm{Im}(\alpha_{zz}(\omega_{1}))\),

\(\mathrm{Re}(\alpha_{xx}(\omega_{2}))\),
\(\mathrm{Im}(\alpha_{xx}(\omega_{2}))\),
\(\cdots\),
\(\mathrm{Re}(\alpha_{zz}(\omega_{2}))\),
\(\mathrm{Im}(\alpha_{zz}(\omega_{2}))\),

\(\mathrm{Re}(\beta_{xxx}(\omega_{3},\omega_{4}))\),
\(\mathrm{Im}(\beta_{xxx}(\omega_{3},\omega_{4}))\),
\(\cdots\),
\(\mathrm{Re}(\beta_{zzz}(\omega_{3},\omega_{4}))\),
\(\mathrm{Im}(\beta_{zzz}(\omega_{3},\omega_{4}))\),

\(\cdots\),

\(\mathrm{Re}(\beta_{xxx}(\omega_{7},\omega_{8}))\),
\(\mathrm{Im}(\beta_{xxx}(\omega_{7},\omega_{8}))\),
\(\cdots\),
\(\mathrm{Re}(\beta_{zzz}(\omega_{7},\omega_{8}))\),
\(\mathrm{Im}(\beta_{zzz}(\omega_{7},\omega_{8}))\) ].



Last but not least, to perform such calculations, users have to provide OpenRSP
the knowledge of reference state (usually the ground state) by setting the
ref_ham, ref_state and ref_overlap, which are struct QcMat* in
C and type(QcMat) in Fortran. They are respectively the Hamiltonian (Fock
matrix), atomic orbital based density matrix and overlap integral matrix.





          

      

      

    

  

    
      
          
            
  
Linear Response Equation Solver

Both in the response function and the residue calculations, OpenRSP needs to
solve the linear response equation, that will be accomplished by the linear
response equation solver from the host program.

The host program can specify the solver by calling
OpenRSPSetLinearRSPSolver(), where the last argument is the callback
function of the solver.

The requirement for this callback function get_linear_rsp_solution()
has been discussed in chapter_callback_functions.

As a user of OpenRSP, one should be aware that OpenRSP will send to the solver,
multiple right hand side (RHS) vectors of the time-dependent self-consistent-field
(TDSCF) equation. Because solving multiple response parameters (corresponding
to multiple RHS vectors) together may help the convergence of the solving
process.





          

      

      

    

  

    
      
          
            
  
Two-Electron Operators

Similar to One-Electron Operators, the two-electron operators will be
saved in a linked list in OpenRSP. Users can call the API
OpenRSPAddTwoOper() several times to add several two-electron
operators to the electronic Hamiltonian.

Each node in the linked list corresponds to a two-electron operator. During
calculations, OpenRSP will walk through the linked list to get correct
contributions from the two-electron part.

This API and its callback functions have been described in
chapter_api_reference and chapter_callback_functions. Users can
also find examples in the OpenRSP unit testing (files in the directory
tests).

The arguments num_pert_lab, pert_labels and pert_max_orders are
used in a similar way as those of overlap, one-electron integrals, that OpenRSP
will not invoke the callback functions if a perturbation tuple already results
in zero two-electron integrals.

In this tutorial, we will further discuss the callback function
get_two_oper_exp() to calculate the expectation values
\(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\boldsymbol{D}_{\text{LHS}}^{a''b''c''\cdots})
\boldsymbol{D}_{\text{RHS}}^{a'b'c'\cdots}]\).

The calculations of two-electron integrals are most time-consuming, and
different host programs may have different strategies to calculate the
two-electron integrals.

OpenRSP therefore sends both the left hand side and right hand side arrays of
density matrices to the callback function, and the host program can decide how
the expectation values will be calculated.

For instance, if OpenRSP sends:


	dmat_len_tuple=2,


	num_LHS_dmat[2]={2, 2},


	LHS_dens_mat[3]={D1,D2, D3,D4},


	num_RHS_dmat[2]={2, 3},


	RHS_dens_mat[5]={D5,D6, D7,D8,D9},




which means OpenRSP wants the following expectation values back:


/* {D1,D2} \(\otimes\) {D5,D6}*/

[ \(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D1})\texttt{D5}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D1})\texttt{D5}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D1})\texttt{D6}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D1})\texttt{D6}])\),

\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D2})\texttt{D5}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D2})\texttt{D5}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D2})\texttt{D6}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D2})\texttt{D6}])\),

/* {D3,D4} \(\otimes\) {D7,D8,D9}*/

\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D7}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D7}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D8}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D8}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D9}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D3})\texttt{D9}])\),

\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D7}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D7}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D8}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D8}])\),
\(\mathrm{Re}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D9}])\),
\(\mathrm{Im}(\mathrm{Tr}[\boldsymbol{G}^{abc\cdots}(\texttt{D4})\texttt{D9}])\) ].







          

      

      

    

  

    
      
          
            
  
Exchange-Correlation Functionals

Like the One-Electron Operators and Two-Electron Operators, users
can call the API OpenRSPAddXCFun() several times to add several
XC functionals into a linked list in OpenRSP.

Each node in the linked list corresponds to an XC functional, which will be
visited by OpenRSP during calculations to make sure all XC functional
contributions are taken into account.

This API and its callback functions have been described in
chapter_api_reference and chapter_callback_functions. Users can
also find examples in the OpenRSP unit testing (files in the directory
tests).

Similar to one- and two-electron operators, arguments num_pert_lab,
pert_labels and pert_max_orders in the API OpenRSPAddXCFun(),
will be used by OpenRSP to check if a perturbation tuple already results in
zero XC functional integrals, and so that the callback functions will not be
invoked.

However, due to its nonlinear dependency of density matrix, the
calculations of integrals and expectation values of XC functionals are much
different from those of the one- and two-electron operators.

Therefore, additional information regarding the (perturbed) density matrices
will be sent to the callback functions get_xc_fun_mat() and
get_xc_fun_exp(), to facilitate such calculations.

Users are therefore recommend to read carefully the descriptions of these two
callback functions in chapter_callback_functions, to prepare their own
callback functions.





          

      

      

    

  

    
      
          
            
  
Zero-Electron Operators

The computation of zero-electron operator contributions (like nuclear
Hamiltonian) to the molecular properties in OpenRSP do not involve the
electronic quantities (i.e. the (perturbed) density matrices), and will be
calculated after all electronic contributions obtained.

Similar to one- and two-electron operators, users can call the API
OpenRSPAddZeroOper() serveral times to add a few zero-electron
operators to OpenRSP (which are arranged in a linked list).

Please see chapter_api_reference and chapter_callback_functions
for the description of this API and the callback function
get_zero_oper_contrib().
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