
OpenRSP Documentation
Release 1.0.0

OpenRSP authors

Jun 30, 2020





About the project

1 What is OpenRSP? 3

2 Authors 5

3 Citation guide 7

4 History of the project 9

5 Version history and changelog 11

6 Programs where OpenRSP is used 13

7 Papers involving OpenRSP 15

8 Theoretical background 17

9 Get and run OpenRSP 19

10 Add OpenRSP to a quantum chemistry program 21

11 Get involved with development 41

12 How Sphinx works 43

13 Tentative Rules for Developers 45

Bibliography 47

Index 49

i



ii



OpenRSP Documentation, Release 1.0.0

Welcome to the website of OpenRSP - a program library for the open-ended, analytic calculation of molecular prop-
erties! Please choose a topic to learn more about what OpenRSP is, who is involved it it, how you can use it or how
you can get involved.

About the project 1



OpenRSP Documentation, Release 1.0.0

2 About the project



CHAPTER 1

What is OpenRSP?

OpenRSP is a program library that uses recursive routines to identify and assemble contributions to response properties
- that is, molecular properties as they are expressed in the theory called “response theory” from theoretical chemistry.

The name of OpenRSP reflects the following features:

• It is a library for the Open-ended calculation of ReSPonse properties: It can be used for the calculation of
reponse properties to arbitrary order.

• It is Open-source and is publicly available under the LGPL v2.1 license.

• It has an application programming interface that Opens it to connection with other programs that wish to make
use of its functionality.

1.1 What are response properties?

Response properties describe how fundamental properties of a molecular system respond to external influences like
subjection to an electromagnetic field or displacement of the atomic nuclei. They and related properties are essential for
the description of spectroscopic processes and molecular characteristics like infrared spectroscopy, Raman scattering,
multiphoton absorption and vibrational energy levels. If you have ever done computational work on the molecular level
for phenomena in this category, chances are that response properties were involved at some stage of the calculation.

Response properties can be categorized by their order, that is, the “number of influences” that were taken into consid-
eration for a given property. The first such order is called linear response and contains much-used properties like the
electric dipole polarizability - i.e. the first-order change to the molecular dipole moment in the presence of an electric
field - or the Hessian matrix of nuclear geometric displacements - i.e. the change in the molecular gradient that would
result from displacing each coordinate of the molecular geometry.

Higher orders of response properties describe the changes that the fundamental molecular property would undergo
upon subjection to more than one external influence, or upon higher-order interactions with the same influence. Ex-
amples of such properties are the geometric gradient of the electric dipole polarizability - essential for the description
of vibrational Raman spectra - or the cubic and quartic force constants, i.e. the third- and fourth-order derivatives
of the molecular energy with respect to geometrical displacements - which may be used to calculate corrections to a
description of the vibrational energy levels stemming from the geometric Hessian.

3

https://github.com/openrsp/openrsp


OpenRSP Documentation, Release 1.0.0

1.2 Why use OpenRSP?

By its recursive structure, OpenRSP makes it possible to calculate response properties of arbitrary complexity in an
analytical manner, not resorting to numerical schemes like finite difference methods in the calculation. Compared to
analytical methods, numerical approaches may be associated with a greater degree of uncertainty related to accuracy
and practical feasibility of the calculation, and we therefore think that analytical calculation should be used whenever
it is practical.

Today’s programs written for the calculation of response properties may either not have a recursive structure, or may
use numerical methods to different extents, or both. In the cases where existing programs use an analytical approach,
they may either be not recursive (which typically means that a new program routine must be written for each new
property for which calculation is desired), or they may only be usable for a limited category of properties. As the
complexity of the expressions that must be evaluated in an analytical approach to yield the desired response property
increases rapidly with the order of response, such analytic calculation of high-order response properties can quickly
become a very complicated task and the implementation of ad hoc program routines for their calculation may be
intractable at higher orders.

The structure of OpenRSP, using recursion as a core tool, solves the task of identifying and assembling contributions to
response properties “once and for all”. When combined with program libraries that can provide the contributions that
OpenRSP identifies, any response property can be calculated fully analytically as long as those libraries can provide
the necessary contributions. We note, however, that the present version of the code is still awaiting the completion
of functionality to handle perturbations that both change the basis set and have a nonzero frequency associated with
them, but that such extension is within the scope of the present underlying theory.

4 Chapter 1. What is OpenRSP?



CHAPTER 2

Authors

This table lists the main developers of OpenRSP and their current affiliation:

Table 1: OpenRSP authors (alphabetical order of surname)
Name Affiliation
Radovan Bast UiT The Arctic University of Norway
Daniel H. Friese
Bin Gao UiT The Arctic University of Norway
Dan J. Jonsson UiT The Arctic University of Norway
Magnus Ringholm UiT The Arctic University of Norway
Simen S. Reine University of Oslo
Kenneth Ruud UiT The Arctic University of Norway

Requests or comments should primarily be directed to authors listed in boldface whose e-mail addresses are all in the
format firstname.lastname@uit.no.

5



OpenRSP Documentation, Release 1.0.0

6 Chapter 2. Authors



CHAPTER 3

Citation guide

All published results obtained with OpenRSP are expected to cite the following references:

• Andreas J. Thorvaldsen, Kenneth Ruud, Kasper Kristensen, Poul Jørgensen and Sonia Coriani, J. Chem. Phys.
129, 214108 (2008).

• Magnus Ringholm, Dan Jonsson and Kenneth Ruud, J. Comput. Chem. 35, 622-633 (2014).

Please also cite the code itself (if you are not using the latest version, please replace “1.0.0” and the DOI by the
corresponding version and DOI which you can find at https://zenodo.org/record/1491928):

• Radovan Bast, Daniel H. Friese, Bin Gao, Dan J. Jonsson, Magnus Ringholm, Simen S. Reine, Kenneth Ruud,
OpenRSP: open-ended response theory (version 1.0.0), Zenodo, https://doi.org/10.5281/zenodo.1491927.

If the use of OpenRSP involved the calculation of single residues of response properties, citation of the following
reference is expected in addition to the references listed above:

• Daniel H. Friese, Maarten T. P. Beerepoot, Magnus Ringholm and Kenneth Ruud, J. Chem. Theory Comput. 11,
1129-1144 (2015).

Please also note that host programs into which OpenRSP is incorporated may have their own citation guidelines or
requirements to be observed if such programs are used.

7

https://zenodo.org/record/1491928
https://doi.org/10.5281/zenodo.1491927


OpenRSP Documentation, Release 1.0.0

8 Chapter 3. Citation guide



CHAPTER 4

History of the project

4.1 The OpenRSP core functionality

Work on the OpenRSP project began in the mid-2000’s when the first work started on what has become the present
version of the program. During this time, the theoretical foundation of response theory on which OpenRSP was based
was developed and used to create program routines that were connected to the Dalton quantum chemistry program.
This version of the code was used to compute several response properties for which analytic calculation had not been
carried out before.

In 2008, we have generalized OpenRSP for the DIRAC program package which enabled us to access a wealth of
response properties at the 4-component relativistic level.

In 2011, work was started on a version - then still a part of Dalton - where recursion was used to achieve an open-
ended implementation of the theory, so that one set of routines could be used to manage the calculation of any response
property. This version forms the basis of the present-day core functionality of the OpenRSP, but was since developed
further to include features such as calculation of single residues of response properties (of use in the calculation of
multiphoton strengths), calculation of multiple properties in one invocation with reuse of common intermediate results,
and restructuring of calls to external routines to reduce recalculation of various contributions such as perturbed one-
and two-electron integrals.

4.2 OpenRSP as a modular library with an API

In order to make OpenRSP into a modular library that was not tied to any one particular quantum chemistry program
- or host program - work began in 2013 on developing an application programming interface (API) for OpenRSP,
involving the creation of clearly defined interfaces between OpenRSP and other codes, the use of callback routines in
order to abstract the way in which the OpenRSP core asks for contributions from external libraries, and the develop-
ment of the QcMatrix library to abstract and mediate matrix operations so that OpenRSP is agnostic to the underlying
implementation of such operations. The first host program to make use of this modular functionality is the LSDalton
<http://daltonprogram.org/>‘_ quantum chemistry program.

9

http://daltonprogram.org/


OpenRSP Documentation, Release 1.0.0

4.3 Libraries for external contributions

During the course of its execution, OpenRSP identifies various contributions that it must get from libraries external
to it in order to be able to assemble the response property or properties to be calculated, such as perturbed one- and
two-electron integral contributions, exchange-correlation contributions if a density-functional theory calculation is
requested, or solution of so-called response equations. Therefore, the development of libraries that can provide such
functionality at a sufficient level of generality - although not necessarily driven by the demands of OpenRSP - has
nevertheless been an important concurrent task, and has resulted in the creation of sophisticated software without
which OpenRSP would not be able to do what it does best. Some of the libraries that are presently used or have been
used by OpenRSP are listed below:

• Gen1Int for the calculation of perturbed one-electron integrals

• cgto-diff-eri for the calculation of perturbed two-electron integrals

• HODI for the calculation of perturbed integrals

• XCint and XCFun for the calculation of exchange-correlation contributions

• A linear response equation solver by Sonia Coriani et al.

• FraME for a polarizable embedding description of molecular surroundings

• PCMSolver for a polarizable continuum description of molecular surroundings

10 Chapter 4. History of the project

https://github.com/dftlibs/xcint/
https://github.com/dftlibs/xcfun/


CHAPTER 5

Version history and changelog

5.1 Version 1.0.0 (2020-06-30)

5.1.1 Code

• Now requires Fortran 2008

• Rewrote linked list functionality for caching to instead use (reallocating) arrays

• “Number of components” marker in rsp_tensor output file now written as ‘NUM_COMPONENTS’ instead of
‘NUM COMPONENTS’

• Significantly decreased usage of array constructors in function/subroutine arguments

• Fixed various memory leak/out-of-bounds errors that sometimes would happen

• OpenRSP now looks for available file units before choosing one to use

• Disabled internal memory limit and memory bookkeeping, may be reinstated later

• If a response tensor is large, then if it’s printed at the debugging print level, it’s broken down into smaller chunks

• Added stops for various currently unsupported residue calculation setups

• Fixed a bug concerning testing of perturbation frequencies against excitation energy for residue calculations

• Removed some unused residue-related routines

• Calculation setup errors encountered in wrapper routines now cause exit, not just warning and then continuing

5.1.2 Project

• Added contribution guide and authorship process guide

• Updated pull request template to solicit agreement to contribution terms

• Various changes to documentation

11



OpenRSP Documentation, Release 1.0.0

5.1.3 Known issues

• Now compiles and runs with most compilers but still problems with some Intel/2018 and Intel/2019 setups

• The “excitation” perturbation in a single residue calculation is now given the label EX1 in the rsp_tensor file;
however, its current implementation still results in triplication of the calculation result data due to being treated
as having three components when in fact it has got only one

• Does not yet support calculations involving perturbations that are both non-static and change the basis set (the
foremost example of such a perturbation is the magnetic dipole perturbation with London atomic orbitals).

5.2 Version 1.0.0-alpha (2018-11-19)

5.2.1 New

• Implemented application programming interface and corresponding developer manual using literate program-
ming

• Adopted new file format for printing of final results

• Added support for caching of intermediate contributions and restarting an interrupted calculation

• Implemented recurse-calculate-recurse approach for most contributions

• Added support for passing several (pairs of) arguments for contraction with perturbed contributions depending
to first (second) order on the perturbed/unperturbed density matrix, implemented a similar scheme for Pulay and
Lagrange-type contributions

• Added support for calculation of several properties in one run with reuse of common intermediate results

• Added support for calculation of single residues of electric dipole polarization properties

• Started using callback function scheme for external contributions and added application programming interface:
Callback functions now fulfill the role previously played by interface files (2015-02-09)

• General response code added (2012-03-19)

• Repository initialized (2010-05-23)

5.2.2 Changed

• This is the first changelog entry, so no changes to be mentioned here.

12 Chapter 5. Version history and changelog



CHAPTER 6

Programs where OpenRSP is used

The following programs feature or have featured OpenRSP in some version:

Dalton has featured OpenRSP in a private version at an earlier stage of development, but that version of OpenRSP is
now outdated.

LSDalton will soon feature a new and public version of OpenRSP that is in active development.

13

http://daltonprogram.org/
http://daltonprogram.org/


OpenRSP Documentation, Release 1.0.0

14 Chapter 6. Programs where OpenRSP is used



CHAPTER 7

Papers involving OpenRSP

This is a list of scientific articles where OpenRSP is involved in some capacity, either pertaining to theoretical devel-
opment related to the core functionality or related functionality, or as having been applied to produce computational
results.

7.1 2018

7.2 2017

7.3 2016

7.4 2015

7.5 2014

7.6 2008

15



OpenRSP Documentation, Release 1.0.0

16 Chapter 7. Papers involving OpenRSP



CHAPTER 8

Theoretical background

We are working on a documentation of the OpenRSP core routines and its application programming interface (API),
and this, together with a introduction of the underlying theory of OpenRSP intended to be accessible, will be made
available on this website once ready.

In the meantime, for a technical explanation of the theoretical background of OpenRSP, the following references may
prove informative:

The paper describing the version of response theory upon which OpenRSP is based.

• Andreas J. Thorvaldsen, Kenneth Ruud, Kasper Kristensen, Poul Jørgensen and Sonia Coriani, J. Chem. Phys.
129, 214108 (2008)

Describes a recursive algorithmic approach for the calculation of response properties:

• Magnus Ringholm, Dan Jonsson and Kenneth Ruud, J. Comput. Chem. 35, 622-633 (2014)

Describes a recursive algorithmic approach for the calculation of single residues of response functions that can be used
to obtain multiphoton absorption matrix elements:

• Daniel H. Friese, Maarten T. P. Beerepoot, Magnus Ringholm and Kenneth Ruud, J. Chem. Theory Comput. 11,
1129-1144 (2015)

Describes a recursive algorithmic approach for the calculation of single residues of response functions that contain
perturbations which affect the basis set (please note that this functionality is not yet implemented in the latest version
of OpenRSP):

• Daniel H. Friese, Magnus Ringholm, Bin Gao and Kenneth Ruud, J. Chem. Theory Comput. 11 (10), 4814
(2015)

17



OpenRSP Documentation, Release 1.0.0

18 Chapter 8. Theoretical background



CHAPTER 9

Get and run OpenRSP

If you want to get OpenRSP and use it for calculations, then please make note of the following: OpenRSP is a program
library that manages the calculation of response properties, and it cannot calculate these properties without getting
contributions like perturbed one- and two-electron integrals or solutions of response equations from other codes to
which it connects through the application programming interface (API). This means that if you download and build
OpenRSP from its GitHub repository, the compiled product will not on its own be able to calculate response properties.
A set of API connections to enable OpenRSP to manage response property calculations can for example be made in
quantum chemistry programs the where necessary routines for these contributions are implemented.

Consequently, in order to use OpenRSP for calculations, it is necessary to use it in a host program into which OpenRSP
has been incorporated in this way, and a list of such programs is kept at the Programs where OpenRSP is used page.
The specific way in which OpenRSP is invoked in a host program - i.e. the way that you can make OpenRSP calculate
something in that program - is a feature of each such program, and you must therefore follow the relevant instructions
to achieve this, as may for example be shown in the user manual for the host program that you want to use.

19

https://github.com/openrsp/openrsp


OpenRSP Documentation, Release 1.0.0

20 Chapter 9. Get and run OpenRSP



CHAPTER 10

Add OpenRSP to a quantum chemistry program

If you want to add OpenRSP to a quantum chemistry program, then you are free to do so provided that you do not
violate OpenRSP’s LGPL v2.1 software license as described on OpenRSP’s GitHub repository.

In order to enable OpenRSP to work as intended, you must provide routines that connect to the OpenRSP applica-
tion programming interface (API) to give OpenRSP access to contributions such as perturbed one- and two electron
integrals, exchange-correlation contributions if calculations at the density-functional theory (DFT) level is desired, or
solution routines for response equations.

Please note that OpenRSP is a program library that manages the calculation of response properties, and it cannot carry
out actual such calculations without getting contributions like the ones mentioned here from program routines that are
external to OpenRSP.

10.1 Compile OpenRP

Before compiling OpenRSP, you need to make sure the following programs are installed on your computer:

1. Git,

2. CMake (≥ 2.8),

3. C, C++ (if C++ APIs built) and/or Fortran 2003 (if Fortran APIs built) compilers,

4. HDF 5 (≥ 1.8) if it is enabled in QcMatrix library,

5. BLAS and LAPACK libraries, and

6. QcMatrix library.

For the time being, only CMake can be used to compile OpenRSP. In general, OpenRSP should be compiled together
with the host programs. See for example the LSDalton program.

You can also compile OpenRSP alone to be familiar with how it works. But no real calculations will be performed, all
the callback functions in the OpenRSP unit testing only return pre-defined data or read data from file. Let us assume
that you want to compile the library in directory build, you could invoke the following commands:

21

https://github.com/openrsp/openrsp
https://gitlab.com/bingao/qcmatrix


OpenRSP Documentation, Release 1.0.0

mkdir build
cd build
ccmake ..
make

During the step ccmake, you need to set some parameters appropriately for the compilation. For instance, if you en-
able OPENRSP_TEST_EXECUTABLE, some executables for the test suite will be built and can run after compilation.
So that you are able to check if OpenRSP has been successfully compiled. A detailed list of the parameters controlling
the compilation is given in the following table:

Table 1: OpenRSP CMake parameters
CMake parameters Description Default
OPENRSP_BUILD_WEB Build OpenRSP from WEB files (only useful for develop-

ers)
OFF

OPENRSP_FORTRAN_API Build Fortran 2003 API OFF
OPENRSP_PERT_LABEL_BIT Number of bits for a perturbation label (used for perturba-

tion free scheme)
10

OPENRSP_TEST_EXECUTABLE Build test suite as excutables (otherwise, as functions in the
library)

ON

OPENRSP_USER_CONTEXT Enable user context in callback functions OFF
OPENRSP_ZERO_BASED Zero-based numbering ON
QCMATRIX_HEADER_DIR Directory of header files of QcMatrix library None
QCMATRIX_LIB Name of QcMatrix library with absolute path None
QCMATRIX_MODULE_DIR Directory of Fortran modules of QcMatrix library None

10.2 OpenRSP Notations and Conventions

The following notations and conventions will be used through the OpenRSP program and the documentation:

Perturbation is described by a label, a complex frequency and its order. Any two perturbations are different if they
have different labels, and/or frequencies, and/or orders.

Perturbation label An integer distinguishing one perturbation from others; all different perturbation labels
involved in the calculations should be given by calling the application programming interface (API)
OpenRSPSetPerturbations(); OpenRSP will stop if there is any unspecified perturbation label given
afterwards when calling the APIs OpenRSPGetRSPFun() or OpenRSPGetResidue().

Perturbation order Each perturbation can acting on molecules once or many times, that is the order of the perturba-
tion.

Perturbation components and their ranks Each perturbation may have different numbers of components for their
different orders, the position of each component is called its rank.

For instance, there will usually be 𝑥, 𝑦, 𝑧 components for the electric dipole perturbation, and their ranks are
{0,1,2} in zero-based numbering, or {1,2,3} in one-based numbering.

The numbers of different components of perturbations and their ranks are totally decided by the host program.
OpenRSP will get such information from callback functions, that is OpenRSP itself is a perturbation free library.

NOTE: the above perturbtion free scheme is however not implemented for the current release so that OpenRSP
will use its own internal representations for different perturbations.

Perturbation tuple An ordered list of perturbation labels, and in which we further require that identical perturbation
labels should be consecutive. That means the tuple (𝑎, 𝑏, 𝑏, 𝑐) is allowed, but (𝑎, 𝑏, 𝑐, 𝑏) is illegal because the
identical labels 𝑏 are not consecutive.

22 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

As a tuple:

1. Multiple instances of the same labels are allowed so that (𝑎, 𝑏, 𝑏, 𝑐) ̸= (𝑎, 𝑏, 𝑐), and

2. The perturbation labels are ordered so that (𝑎, 𝑏, 𝑐) ̸= (𝑎, 𝑐, 𝑏) (because their corresponding response
functions or residues are in different shapes).

We will sometimes use an abbreviated form of perturbation tuple as, for instance 𝑎𝑏𝑐 ≡ (𝑎, 𝑏, 𝑐).

Obviously, a perturbation tuple + its corresponding complex frequencies for each perturbation label can be
viewed as a set of perturbations, in which the number of times a label (with the same frequency) appears is the
order of the corresponding perturbation.

Category of perturbation frequencies We use different integers for distinguishing different values of frequencies
within a frequency configuration. The category arrary is determined by:

1. For each frequency configuration, we start at the first perturbation and let its frequency value be designated
number 1, then

2. For the next perturbation,

1. If its frequency value corresponds to a frequency value encountered previously in this frequency, then
use the same designation as for that previously encountered frequency value, or

2. If its frequency value has not been encountered before, then let that frequency value be designated
with the first unused number;

3. Continue like this until the end of the perturbation tuple;

4. Start the numbering over again at the next frequency configuration.

Canonical order

1. In OpenRSP, all perturbation tuples are canonically orderd according to the argument pert_tuple in the
API OpenRSPGetRSPFun() or OpenRSPGetResidue(). For instance, when a perturbation tuple
(𝑎, 𝑏, 𝑐) given as pert_tuple in the API OpenRSPGetRSPFun(), OpenRSP will use such order
(𝑎 > 𝑏 > 𝑐) to arrange all perturbation tuples inside and sent to the callback functions.

2. Moreover, a collection of several perturbation tuples will also follow the canonical or-
der. For instance, a collection of all possible perturbation tuples of labels 𝑎, 𝑏, 𝑐, 𝑑 are
(0, 𝑎, 𝑏, 𝑎𝑏, 𝑐, 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐, 𝑑, 𝑎𝑑, 𝑏𝑑, 𝑎𝑏𝑑, 𝑐𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑, 𝑎𝑏𝑐𝑑), where 0 means unperturbed quantities that is
always the first one in the collection.

The rules for generating the above collection are:

1. When taking a new perturbation into consideration, always do so in alphabetical order (and begin with
the empty set);

2. When taking a new perturbation into consideration, the new subsets are created by making the union of
all previous subsets (including the empty set) and the new perturbation (putting the new perturbation
at the end).

Perturbation 𝑎 The first perturbation label in the tuple sent to OpenRSP APIs OpenRSPGetRSPFun() or
OpenRSPGetResidue(), are the perturbation 𝑎 [Thorvaldsen2008].

Perturbation addressing

1. The addressing of perturbation labels in a tuple is decided by (i) the argument pert_tuple sent to the
API OpenRSPGetRSPFun() or OpenRSPGetResidue(), and (ii) the canonical order that OpenRSP
uses.

2. The addressing of components per perturbation (several consecutive identical labels with the same complex
frequency) are decided by the host program (NOTE: as mentioned above, the perturbtion free scheme is

10.2. OpenRSP Notations and Conventions 23



OpenRSP Documentation, Release 1.0.0

not implemented for the current release so that OpenRSP will use its own internal subroutines to compute
the address of components per perturbation).

3. The addressing of a collection of perturbation tuples follows the canonical order as aforementioned.

Therefore, the shape of response functions or residues is mostly decided by the host program. Take ℰ𝑎𝑏𝑏𝑐 as an
example, its shape is (𝑁𝑎, 𝑁𝑏𝑏, 𝑁𝑐), where 𝑁𝑎 and 𝑁𝑐 are respectively the numbers of components of the first
order of the perturbations 𝑎 and 𝑐, and 𝑁𝑏𝑏 is the number of components of the second order of the perturbation
𝑏, and

1. In OpenRSP, we will use notation [a][bb][c] for ℰ𝑎𝑏𝑏𝑐, where the leftmost index (a) runs slowest in
memory and the rightmost index (c) runs fastest. However, one should be aware that the results are still in
a one-dimensional array.

2. If there two different frequencies for the perturbation 𝑏, OpenRSP will return [a][b1][b2][c], where
b1 and b2 stand for the components of the first order of the perturbation 𝑏.

3. The notation for a collection of perturbation tuples (still in a one-dimensional array) is {1,[a],
[b],[a][b],[c],[a][c],[b][c],[a][b][c]} for (0, 𝑎, 𝑏, 𝑎𝑏, 𝑐, 𝑎𝑐, 𝑏𝑐, 𝑎𝑏𝑐), where as afore-
mentioned the first one is the unperturbed quantities.

10.3 API Reference

In order to use OpenRSP, C users should first include the header file of OpenRSP in their codes:

#inclde "OpenRSP.h"

while Fortran users should use the OpenRSP module:

use OpenRSP_f

In this chapter, we will describe all the functions defined in OpenRSP API for users. These functions should be invoked
as:

ierr = OpenRSP...(...)

where ierr contains the error information. Users should check if it equals to QSUCCESS (constant defined in
QcMatrix library). If not, there was error happened in the invoked function, and the calculations should stop.

10.3.1 Functions of OpenRSP API (C version)

QErrorCode OpenRSPCreate(open_rsp, num_atoms)
Creates the context of response theory calculations, should be called at first.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP* (struct*)

Parameters

• num_atoms (const QInt) – number of atoms (to be removed after perturbation free
scheme implemented)

Return type QErrorCode (error information)

QErrorCode OpenRSPSetLinearRSPSolver(open_rsp, user_ctx, get_linear_rsp_solution)
Sets the context of linear response equation solver.

24 Chapter 10. Add OpenRSP to a quantum chemistry program

https://gitlab.com/bingao/qcmatrix


OpenRSP Documentation, Release 1.0.0

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• user_ctx (void*) – user-defined callback function context

• get_linear_rsp_solution (const GetLinearRSPSolution (function
pointer void (*)(...))) – user-specified callback function of linear response
equation solver, see the callback function get_linear_rsp_solution()

Return type QErrorCode

QErrorCode OpenRSPSetPerturbations(open_rsp, num_pert_lab, pert_labels, pert_max_orders,
pert_num_comps, user_ctx, get_pert_concatenation)

Sets all perturbations involved in response theory calculations.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels involved in
calculations

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• pert_num_comps (const QInt*) – number of components of a perturbation de-
scribed by exactly one of the above different labels, up to the allowed maximal order, size
is therefore the sum of pert_max_orders

• user_ctx (void*) – user-defined callback function context

• get_pert_concatenation (const GetPertCat (function pointer
void (*)(...))) – user specified function for getting the ranks of components of
sub-perturbation tuples (with the same perturbation label) for given components of the
corresponding concatenated perturbation tuple

Return type QErrorCode

NOTE: get_pert_concatenation() will not be invoked in the current release; OpenRSP will use it after the
perturbation free scheme implmented.

QErrorCode OpenRSPSetOverlap(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx,
get_overlap_mat, get_overlap_exp)

Sets the overlap operator.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels that can act
on the overlap operator

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• user_ctx (void*) – user-defined callback function context

10.3. API Reference 25



OpenRSP Documentation, Release 1.0.0

• get_overlap_mat (const GetOverlapMat (function pointer void
(*)(...))) – user-specified callback function to calculate integral matrices of overlap
operator as well as its derivatives with respect to different perturbations, see the callback
function get_overlap_mat()

• get_overlap_exp (const GetOverlapExp (function pointer void
(*)(...))) – user-specified callback function to calculate expectation values of overlap
operator as well as its derivatives with respect to different perturbations, see the callback
function get_overlap_exp()

Return type QErrorCode

QErrorCode OpenRSPAddOneOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx,
get_one_oper_mat, get_one_oper_exp)

Adds a one-electron operator to the Hamiltonian.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels that can act
on the one-electron operator

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• user_ctx (void*) – user-defined callback function context

• get_one_oper_mat (const GetOneOperMat (function pointer void
(*)(...))) – user-specified callback function to calculate integral matrices of one-
electron operator as well as its derivatives with respect to different perturbations, see the
callback function get_one_oper_mat()

• get_one_oper_exp (const GetOneOperExp (function pointer void
(*)(...))) – user-specified callback function to calculate expectation values of one-
electron operator as well as its derivatives with respect to different perturbations, see the
callback function get_one_oper_exp()

Return type QErrorCode

QErrorCode OpenRSPAddTwoOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx,
get_two_oper_mat, get_two_oper_exp)

Adds a two-electron operator to the Hamiltonian.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels that can act
on the two-electron operator

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• user_ctx (void*) – user-defined callback function context

26 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

• get_two_oper_mat (const GetTwoOperMat (function pointer void
(*)(...))) – user-specified callback function to calculate integral matrices of two-
electron operator as well as its derivatives with respect to different perturbations, see the
callback function get_two_oper_mat()

• get_two_oper_exp (const GetTwoOperExp (function pointer void
(*)(...))) – user-specified callback function to calculate expectation values of two-
electron operator as well as its derivatives with respect to different perturbations, see the
callback function get_two_oper_exp()

Return type QErrorCode

QErrorCode OpenRSPAddXCFun(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx,
get_xc_fun_mat, get_xc_fun_exp)

Adds an exchange-correlation (XC) functional to the Hamiltonian.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels that can act
on the XC functional

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• user_ctx (void*) – user-defined callback function context

• get_xc_fun_mat (const GetXCFunMat (function pointer void
(*)(...))) – user-specified callback function to calculate integral matrices of XC
functional as well as its derivatives with respect to different perturbations, see the callback
function get_xc_fun_mat()

• get_xc_fun_exp (const GetXCFunExp (function pointer void
(*)(...))) – user-specified callback function to calculate expectation values of
XC functional as well as its derivatives with respect to different perturbations, see the
callback function get_xc_fun_exp()

Return type QErrorCode

QErrorCode OpenRSPAddZeroOper(open_rsp, num_pert_lab, pert_labels, pert_max_orders, user_ctx,
get_zero_oper_contrib)

Adds a zero-electron operator to the Hamiltonian.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Parameters

• num_pert_lab (const QInt) – number of all different perturbation labels that can act
on the zero-electron operator

• pert_labels (const QcPertInt*) – all the different perturbation labels involved

• pert_max_orders (const QInt*) – allowed maximal order of a perturbation de-
scribed by exactly one of the above different labels

• user_ctx (void*) – user-defined callback function context

10.3. API Reference 27



OpenRSP Documentation, Release 1.0.0

• get_zero_oper_contrib (const GetZeroOperContrib (function
pointer void (*)(...))) – user-specified function to calculate contributions from
the zero-electron operator, see the callback function get_zero_oper_contrib()

Return type QErrorCode

QErrorCode OpenRSPAssemble(open_rsp)
Assembles the context of response theory calculations and checks its validity, should be called before any
function OpenRSPGet...(), otherwise the results might be incorrect.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Return type QErrorCode

QErrorCode OpenRSPWrite(open_rsp, fp_rsp)
Writes the context of response theory calculations.

Parameters

• open_rsp (const OpenRSP*) – context of response theory calculations

• fp_rsp (FILE*) – file pointer

Return type QErrorCode

QErrorCode OpenRSPGetRSPFun(open_rsp, ref_ham, ref_state, ref_overlap, num_props, len_tuple,
pert_tuple, num_freq_configs, pert_freqs, kn_rules, r_flag,
write_threshold, size_rsp_funs, rsp_funs)

Gets the response functions for given perturbations.

Parameters

• open_rsp (OpenRSP*) – context of response theory calculations

• ref_ham (const QcMat*) – Hamiltonian of referenced state

• ref_state (const QcMat*) – electronic state of referenced state

• ref_overlap (const QcMat*) – overlap integral matrix of referenced state

• num_props (const QInt) – number of properties to calculate

• len_tuple (const QInt*) – length of perturbation tuple for each property, size is the
number of properties (num_props)

• pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first label of each property is the
perturbation 𝑎

• num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props

• pert_freqs (const QReal*) – complex frequencies of each
perturbation label (except for the perturbation 𝑎) over all fre-
quency configurations, size is 2 × (dot_product(len_tuple,
num_freq_configs)-sum(num_freq_configs)), and arranged as
[num_freq_configs[i]][len_tuple[i]-1][2] (i runs from 0 to
num_props-1) and the real and imaginary parts of each frequency are consecutive
in memory

• kn_rules (const QInt*) – number 𝑘 for the (𝑘, 𝑛) rule1 for each property (OpenRSP
will determine the number 𝑛), size is the number of properties (num_props)

1 The description of the (𝑘, 𝑛) rule can be found, for instance, in [Ringholm2014].

28 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

• r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not load/use
any existing restarting data and do not save any new restarting data”, and 3 means “use any
existing restarting data and extend existing restarting data with all new restarting data”

• write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP

• size_rsp_funs (const QInt) – size of the response functions, equals to the sum of
the size of each property to calculate—which is the product of the size of added pertur-
bations (specified by the perturbation tuple pert_tuple) and the number of frequency
configurations num_freq_configs for each property

Var rsp_funs the response functions, size is 2 × size_rsp_funs and arranged as
[num_props][num_freq_configs][pert_tuple][2], where the real and imagi-
nary parts of the response functions are consecutive in memory

Vartype rsp_funs QReal*

Return type QErrorCode

QErrorCode OpenRSPGetResidue(open_rsp, ref_ham, ref_state, ref_overlap, order_residue, num_excit,
excit_energy, eigen_vector, num_props, len_tuple, pert_tuple,
residue_num_pert, residue_idx_pert, num_freq_configs, pert_freqs,
kn_rules, r_flag, write_threshold, size_residues, residues)

Gets the residues for given perturbations.

Parameters

• open_rsp (OpenRSP*) – context of response theory calculations

• ref_ham (const QcMat*) – Hamiltonian of referenced state

• ref_state (const QcMat*) – electronic state of referenced state

• ref_overlap (const QcMat*) – overlap integral matrix of referenced state

• order_residue (const QInt) – order of residues, that is also the length of each ex-
citation tuple

• num_excit (const QInt) – number of excitation tuples that will be used for residue
calculations

• excit_energy (const QReal*) – excitation energies of all tu-
ples, size is order_residue × num_excit, and arranged as
[num_excit][order_residue]; that is, there will be order_residue fre-
quencies of perturbation labels (or sums of frequencies of perturbation labels) respectively
equal to the order_residue excitation energies per tuple excit_energy[i][:] (i
runs from 0 to num_excit-1)

• eigen_vector (QcMat*[]) – eigenvectors (obtained from the generalized eigenvalue
problem) of all excitation tuples, size is order_residue × num_excit, and also ar-
ranged in memory as [num_excit][order_residue] so that each eigenvector has its
corresponding excitation energy in excit_energy

• num_props (const QInt) – number of properties to calculate

• len_tuple (const QInt*) – length of perturbation tuple for each property, size is the
number of properties (num_props)

• pert_tuple (const QcPertInt*) – ordered list of perturbation labels (perturbation
tuple) for each property, size is sum(len_tuple), the first label of each property is the
perturbation 𝑎

10.3. API Reference 29



OpenRSP Documentation, Release 1.0.0

• residue_num_pert (const QInt*) – for each property and each excitation en-
ergy in the tuple, the number of perturbation labels whose sum of frequencies equals
to that excitation energy, size is order_residue × num_props, and arragned as
[num_props][order_residue]; a negative residue_num_pert[i][j] (i runs
from 0 to num_props-1) means that the sum of frequencies of perturbation labels equals
to -excit_energy[:][j]

• residue_idx_pert (const QInt*) – for each property and each excitation en-
ergy in the tuple, the indices of perturbation labels whose sum of frequencies equals
to that excitation energy, size is sum(residue_num_pert), and arranged as
[residue_num_pert]

• num_freq_configs (const QInt*) – number of different frequency configurations
for each property, size is num_props

• pert_freqs (const QReal*) – complex frequencies of each pertur-
bation label (except for the perturbation 𝑎) over all frequency configura-
tions and excitation tuples, size is 2 × (dot_product(len_tuple,
num_freq_configs)-sum(num_freq_configs)) × num_excit, and arranged
as [num_excit][num_freq_configs[i]][len_tuple[i]-1][2] (i runs
from 0 to num_props-1) and the real and imaginary parts of each frequency are con-
secutive in memory; notice that the (sums of) frequencies of perturbation labels specified
by residue_idx_pert should equal to the corresponding excitation energies for all
frequency configurations and excitation tuples

• kn_rules (const QInt*) – number 𝑘 for the (𝑘, 𝑛) rule for each property (OpenRSP
will determine the number 𝑛), size is the number of properties (num_props)

• r_flag (const QInt) – flag to determine the restarting setup; 0 means “do not load/use
any existing restarting data and do not save any new restarting data”, and 3 means “use any
existing restarting data and extend existing restarting data with all new restarting data”

• write_threshold (const QReal) – tensor elements with absolute value below
write_threshold will not be output by OpenRSP

• size_residues (const QInt) – size of the residues, equals to the sum of the size of
each property to calculate—which is the product of the size of added perturbations (specified
by the perturbation tuple pert_tuple), the number of excitation tuples (num_excit)
and the number of frequency configurations num_freq_configs for each property

Var residues the residues, size is 2 × size_residues and arranged as
[num_props][num_excit][num_freq_configs][pert_tuple][2], where
the real and imaginary parts of the residues are consecutive in memory

Vartype residues QReal*

Return type QErrorCode

QErrorCode OpenRSPDestroy(open_rsp)
Destroys the context of response theory calculations, should be called at the end.

Var open_rsp context of response theory calculations

Vartype open_rsp OpenRSP*

Return type QErrorCode

30 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

10.3.2 Functions of OpenRSP API (Fortran version)

Functions of OpenRSP API (Fortran) are similar to those of the C version, except that an extra _f should be appended
to each function. Other differences are the (ii) argument types and (iii) callback functions (subroutines for Fortran).
The latter will be described in Chapter subsection_callback_functions. The former relates to the convention of types
in Fortran, please refer to the manual of QcMatrix library and the following table for the convention:

Type in OpenRSP Fortran
struct OpenRSP type(OpenRSP)
void* user_ctx type(C_PTR) user_ctx
callback functions external subroutines

We also want to mention that users can also pass their own defined Fortran type as the user-defined callback function
context to OpenRSP, by encapsulated into the type(C_PTR) user_ctx.

10.4 Callback Function Scheme

To use OpenRSP, users should also prepare different callback functions needed by OpenRSP. These callback functions
will be invoked by OpenRSP during calculations to get integral matrices or expectation values of different one- and
two-electron operators, exchange-correlation functionals and nuclear contributions, or to solve the linear response
equation. The callback functions are slightly different for C and Fortran users, which will be described separately in
this chapter.

It should be noted that the arguments in the following callback functions are over complete. For instance, from the
knowledge of perturbations (oper_num_pert, oper_pert_labels and oper_pert_orders), the dimen-
sion of integral matrices num_int in the callback function get_one_oper_mat() can be computed.

Last but not least, users should be aware that:

1. OpenRSP always ask for complex expectation values for different one- and two-electron operators, exchange-
correlation functionals and nuclear contributions, and these values are presented in memory that the real and
imaginary parts of each value are consecutive. This affects:

1. get_overlap_exp()

2. get_one_oper_exp()

3. get_two_oper_exp()

4. get_xc_fun_exp()

5. get_zero_oper_contrib()

2. In order to reduce the use of temporary matrices and values, OpenRSP requires that calculated integral matrices
and expectation values should be added to the returned argument. OpenRSP will zero the entries of these
matrices and expectation values at first. This requirement affects the callback functions of one- and two-electron
operators, exchange-correlation functionals and nuclear contributions:

1. get_overlap_mat() and get_overlap_exp()

2. get_one_oper_mat() and get_one_oper_exp()

3. get_two_oper_mat() and get_two_oper_exp()

4. get_xc_fun_mat() and get_xc_fun_exp()

5. get_zero_oper_contrib()

10.4. Callback Function Scheme 31

https://gitlab.com/bingao/qcmatrix


OpenRSP Documentation, Release 1.0.0

10.4.1 OpenRSP Callback Functions (C version)

Examples of C callback functions can be found in these files tests/OpenRSP*Callback.c. The detailed infor-
mation of these callback functions are given as follows.

void get_pert_concatenation(pert_label, first_cat_comp, num_cat_comps, num_sub_tuples,
len_sub_tuples, user_ctx, rank_sub_comps)

User specified function for getting the ranks of components of sub-perturbation tuples (with the same perturba-
tion label) for given components of the corresponding concatenated perturbation tuple, the last argument for the
function OpenRSPSetPerturbations().

Parameters

• pert_label (const QcPertInt) – the perturbation label

• first_cat_comp (const QInt) – rank of the first component of the concatenated
perturbation tuple

• num_cat_comps (const QInt) – number of components of the concatenated pertur-
bation tuple

• num_sub_tuples (const QInt) – number of sub-perturbation tuples to construct the
concatenated perturbation tuple

• len_sub_tuples (const QInt*) – length of each sub-perturbation tuple, size
is num_sub_tuples; so that the length of the concatenated perturbation is
sum(len_sub_tuples)

• user_ctx (void*) – user-defined callback function context

Var rank_sub_comps ranks of components of sub-perturbation tuples for the corresponding com-
ponent of the concatenated perturbation tuple, i.e. num_cat_comps components start-
ing from the one with rank first_cat_comp, size is therefore num_sub_tuples ×
num_cat_comps, and arranged as [num_cat_comps][num_sub_tuples]

Vartype rank_sub_comps QInt*

Return type void

NOTE: get_pert_concatenation() will not be invoked in the current release so that users can use a “faked”
function for it.

void get_overlap_mat(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels,
ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx,
num_int, val_int)

User-specified callback function to calculate integral matrices of overlap operator as well as its derivatives with
respect to different perturbations, the second last argument for the function OpenRSPSetOverlap().

Parameters

• bra_num_pert (const QInt) – number of perturbations on the bra center

• bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert

• bra_pert_orders (const QInt*) – orders of perturbations on the bra center, size is
bra_num_pert

• ket_num_pert (const QInt) – number of perturbations on the ket center

• ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert

32 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

• ket_pert_orders (const QInt*) – orders of perturbations on the ket center, size is
ket_num_pert

• oper_num_pert (const QInt) – number of perturbations on the overlap operator2

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap
operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert3

• user_ctx (void*) – user-defined callback function context

• num_int (const QInt) – number of the integral matrices, as the product of the sizes of
perturbations on the bra, the ket and the overlap operator

Var val_int the integral matrices to be added, size is num_int, and arranged as
[oper_pert][bra_pert][ket_pert]

Vartype val_int QcMat*[]

Return type void

void get_overlap_exp(bra_num_pert, bra_pert_labels, bra_pert_orders, ket_num_pert, ket_pert_labels,
ket_pert_orders, oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat,
dens_mat, user_ctx, num_exp, val_exp)

User-specified function for calculating expectation values of the overlap operator and its derivatives, the last
argument for the function OpenRSPSetOverlap().

Parameters

• bra_num_pert (const QInt) – number of perturbations on the bra center

• bra_pert_labels (const QcPertInt*) – labels of perturbations on the bra center,
size is bra_num_pert

• bra_pert_orders (const QInt*) – orders of perturbations on the bra center, size is
bra_num_pert

• ket_num_pert (const QInt) – number of perturbations on the ket center

• ket_pert_labels (const QcPertInt*) – labels of perturbations on the ket center,
size is ket_num_pert

• ket_pert_orders (const QInt*) – orders of perturbations on the ket center, size is
ket_num_pert

• oper_num_pert (const QInt) – number of perturbations on the overlap operator4

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the overlap
operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the overlap operator,
size is oper_num_pert

• num_dmat (const QInt) – number of atomic orbital (AO) based density matrices

• dens_mat (QcMat*[]) – the AO based density matrices

2 Here perturbations on the overlap operator represent those acting on the whole integral of the overlap operator, i.e. they can act on either the
bra center or the ket center by applying the rule of derivatives of a product.

3 Only overlap integrals perturbed on the bra and/or the ket, and those perturbed on the whole integral are needed in the calculations. It means
that, OpenRSP will only ask for overlap integrals either with perturbations on the bra and/or ket (oper_num_pert=0), or with perturbations on
the whole overlap integral (bra_num_pert=0 and ket_num_pert=0).

4 Similar to the callback function get_overlap_mat(), OpenRSP will only ask for expectation values either with perturbations on the bra
and/or ket (oper_num_pert=0), or with perturbations on the whole overlap integral (bra_num_pert=0 and ket_num_pert=0).

10.4. Callback Function Scheme 33



OpenRSP Documentation, Release 1.0.0

• user_ctx (void*) – user-defined callback function context

• num_exp (const QInt) – number of the expectation values, as the product of sizes of
perturbations on the bra, the ket, the overlap operator and the number of density matrices
(num_dmat)

Var val_exp the expectation values to be added, size is 2 × num_exp, and arranged as
[num_dmat][oper_pert][bra_pert][ket_pert][2]

Vartype val_exp QReal*

Return type void

void get_one_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, num_int, val_int)
User-specified function for calculating integral matrices of the one-electron operator and its derivatives, the
second last argument for the function OpenRSPAddOneOper().

Parameters

• oper_num_pert (const QInt) – number of perturbations on the one-electron operator

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-
electron operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the one-electron op-
erator, size is oper_num_pert

• user_ctx (void*) – user-defined callback function context

• num_int (const QInt) – number of the integral matrices, as the size of
perturbations that are specified by oper_num_pert, oper_pert_labels and
oper_pert_orders

Var val_int the integral matrices to be added, size is num_int

Vartype val_int QcMat*[]

Return type void

void get_one_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat,
user_ctx, num_exp, val_exp)

User-specified callback function to calculate expectation values of one-electron operator as well as its derivatives
with respect to different perturbations, the last argument for the function OpenRSPAddOneOper().

Parameters

• oper_num_pert (const QInt) – number of perturbations on the one-electron operator

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the one-
electron operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the one-electron op-
erator, size is oper_num_pert

• num_dmat (const QInt) – number of AO based density matrices

• dens_mat (QcMat*[]) – the AO based density matrices

• user_ctx (void*) – user-defined callback function context

• num_exp (const QInt) – number of expectation values, as the product of the
size of perturbations on the one-electron operator (specified by oper_num_pert,
oper_pert_labels and oper_pert_orders) and the number of density matrices
(num_dmat)

34 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

Var val_exp the expectation values to be added, size is 2 × num_exp, and arranged as
[num_dmat][oper_pert][2]

Vartype val_exp QReal*

Return type void

void get_two_oper_mat(oper_num_pert, oper_pert_labels, oper_pert_orders, num_dmat, dens_mat,
user_ctx, num_int, val_int)

User-specified function for calculating integral matrices of the two-electron operator and its derivatives, the
second last argument for the function OpenRSPAddTwoOper().

Parameters

• oper_num_pert (const QInt) – number of perturbations on the two-electron operator

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-
electron operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the two-electron op-
erator, size is oper_num_pert

• num_dmat (const QInt) – number of AO based density matrices

• dens_mat (QcMat*[]) – the AO based density matrices (𝐷) for calculating
𝐺perturbations(𝐷), where perturbations are specified by oper_num_pert,
oper_pert_labels and oper_pert_orders.

• user_ctx (void*) – user-defined callback function context

• num_int (const QInt) – number of the integral matrices, as the product of the
size of perturbations on the two-electron operator (specified by oper_num_pert,
oper_pert_labels and oper_pert_orders) and the number of AO based density
matrices (num_dmat)

Var val_int the integral matrices to be added, size is num_int, and arranged as
[num_dmat][oper_pert]

Vartype val_int QcMat*[]

Return type void

void get_two_oper_exp(oper_num_pert, oper_pert_labels, oper_pert_orders, dmat_len_tuple,
num_LHS_dmat, LHS_dens_mat, num_RHS_dmat, RHS_dens_mat, user_ctx,
num_exp, val_exp)

User-specified callback function to calculate expectation values of two-electron operator as well as its derivatives
with respect to different perturbations, the last argument for the function OpenRSPAddTwoOper().

Parameters

• oper_num_pert (const QInt) – number of perturbations on the two-electron operator

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the two-
electron operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the two-electron op-
erator, size is oper_num_pert

• dmat_len_tuple (const QInt) – length of different perturbation tuples
of the left-hand-side (LHS) and right-hand-side (RHS) AO based density ma-
trices passed; for instance, if the LHS density matrices passed are (𝐷, 𝐷𝑎,
𝐷𝑏, 𝐷𝑎𝑏), and the RHS density matrices passed are (𝐷𝑏, 𝐷𝑐, 𝐷𝑏𝑐, 𝐷𝑑),
then dmat_len_tuple equals to 4, and that means we want to calculate
Tr[𝐺perturbations(𝐷)𝐷𝑏], Tr[𝐺perturbations(𝐷𝑎)𝐷𝑐], Tr[𝐺perturbations(𝐷𝑏)𝐷𝑏𝑐],

10.4. Callback Function Scheme 35



OpenRSP Documentation, Release 1.0.0

and Tr[𝐺perturbations(𝐷𝑎𝑏)𝐷𝑑], where perturbations are specified by
oper_num_pert, oper_pert_labels and oper_pert_orders.

• num_LHS_dmat (const QInt*) – number of LHS AO based density matrices passed
for each LHS density matrix perturbation tuple, size is dmat_len_tuple; sticking with
the above example, num_LHS_dmatwill be {1, N_a, N_b, N_ab}where N_a, N_b
and N_ab are respectively the numbers of density matrices for the density matrix perturba-
tion tuples a, b and ab

• LHS_dens_mat (QcMat*[]) – the LHS AO based density matrices (𝐷LHS) for calculat-
ing Tr[𝐺perturbations(𝐷LHS)𝐷RHS], size is the sum of num_LHS_dmat

• num_RHS_dmat (const QInt*) – number of RHS AO based density matrices passed
for each RHS density matrix perturbation tuple, size is dmat_len_tuple; sticking with
the above example, num_RHS_dmat will be {N_b, N_c, N_bc, N_d} where N_b,
N_c N_bc and N_d are respectively the numbers of density matrices for the density matrix
perturbation tuples b, c, bc and d

• RHS_dens_mat (QcMat*[]) – the RHS AO based density matrices (𝐷RHS) for calculat-
ing Tr[𝐺perturbations(𝐷LHS)𝐷RHS], size is the sum of num_RHS_dmat

• user_ctx (void*) – user-defined callback function context

• num_exp (const QInt) – number of expectation values, as the product of the
size of perturbations on the two-electron operator (specified by oper_num_pert,
oper_pert_labels and oper_pert_orders) and the number of pairs of LHS and
RHS density matrices, and the number of pairs of LHS and RHS density matrices can be
computed as the dot product of num_LHS_dmat and num_RHS_dmat

Var val_exp the expectation values to be added, size is 2 × num_exp, and arranged as
[dmat_len_tuple][num_LHS_dmat][num_RHS_dmat][oper_pert][2]

Vartype val_exp QReal*

Return type void

void get_xc_fun_mat(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category,
dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_int,
val_int)

User-specified function for calculating integral matrices of the XC functional and its derivatives, the second last
argument for the function OpenRSPAddXCFun().

Parameters

• xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional

• xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional,
size is xc_len_tuple

• num_freq_configs (const QInt) – the number of different frequency configura-
tions to be considered for the perturbation tuple specified by xc_pert_tuple

• pert_freq_category (const QInt*) – category of perturbation frequencies, size
is [num_freq_configs][xc_len_tuple]. Take ℰ𝑔𝑓𝑓𝑓 as an example, suppose we
have four different frequency configurations: “0.0,0.0,0.0,0.0” (3𝑁 × 10 unique elements),
“0.0,-0.2,0.1,0.1” (3𝑁×18 unique elements), “0.0,-0,3,0.1,0.2” (3𝑁×27 unique elements)
and “0.0,-0.1,0.1,0.0” (3𝑁 × 27 unique elements), the pert_freq_category argument
would then be (1,1,1,1, 1,2,3,3, 1,2,3,4, 1,2,3,1).

• dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed; for instance, the complete density matrix perturbation tu-
ples (canonically ordered) for a property ℰ𝑎𝑏𝑐 (i.e. the perturbation tuple xc_pert_tuple

36 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

is abc) are (𝐷, 𝐷𝑎, 𝐷𝑏, 𝐷𝑎𝑏, 𝐷𝑐, 𝐷𝑎𝑐, 𝐷𝑏𝑐), and with the (0, 2) rule, the relevant density
matrix perturbation tuples become (𝐷, 𝐷𝑏, 𝐷𝑐, 𝐷𝑏𝑐) that gives the dmat_num_tuple
as 4

• dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple; sticking with the above example,
the density matrix perturbation tuples passed are (𝐷, 𝐷𝑏, 𝐷𝑐, 𝐷𝑏𝑐) and their associated
indices dmat_idx_tuple is {1, 3, 5, 7} because these numbers correspond to the
positions of the “(𝑘, 𝑛)-surviving” perturbation tuples in the canonically ordered complete
density matrix perturbation tuples

• num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by dmat_idx_tuple) and all fre-
quency configurations, that is num_freq_configs ×

∑︀
i 𝑁i, where 𝑁i is the number of

density matrices for the density matrix perturbation tuple dmat_idx_tuple[i] for a
frequency configuration

• dens_mat (QcMat*[]) – the collected AO based density matrices, size is num_dmat,
and arranged as [num_freq_configs][dmat_idx_tuple]

• user_ctx (void*) – user-defined callback function context

• num_int (const QInt) – number of the integral matrices, equals to the prod-
uct of the size of perturbations on the XC functional (specified by the perturba-
tion tuple xc_pert_tuple) and the number of different frequency configurations
num_freq_configs

Var val_int the integral matrices to be added, size is num_int, and arranged as
[num_freq_configs][xc_pert_tuple]

Vartype val_int QcMat*[]

Return type void

void get_xc_fun_exp(xc_len_tuple, xc_pert_tuple, num_freq_configs, pert_freq_category,
dmat_num_tuple, dmat_idx_tuple, num_dmat, dens_mat, user_ctx, num_exp,
val_exp)

User-specified function for calculating expectation values of the XC functional and its derivatives, the last argu-
ment for the function OpenRSPAddXCFun().

Parameters

• xc_len_tuple (const QInt) – length of the perturbation tuple on the XC functional

• xc_pert_tuple (const QcPertInt*) – perturbation tuple on the XC functional,
size is xc_len_tuple

• num_freq_configs (const QInt) – the number of different frequency configura-
tions to be considered for the perturbation tuple specified by xc_pert_tuple

• pert_freq_category (const QInt*) – category of perturbation frequencies, size
is [num_freq_configs][xc_len_tuple].

• dmat_num_tuple (const QInt) – the number of different perturbation tuples of the
AO based density matrices passed

• dmat_idx_tuple (const QInt*) – indices of the density matrix perturbation tuples
passed (canonically ordered), size is dmat_num_tuple

• num_dmat (const QInt) – number of collected AO based density matrices for the
passed density matrix perturbation tuples (specified by dmat_idx_tuple) and all fre-
quency configurations, that is num_freq_configs ×

∑︀
i 𝑁i, where 𝑁i is the number of

10.4. Callback Function Scheme 37



OpenRSP Documentation, Release 1.0.0

density matrices for the density matrix perturbation tuple dmat_idx_tuple[i] for a
frequency configuration

• dens_mat (QcMat*[]) – the collected AO based density matrices, size is num_dmat,
and arranged as [num_freq_configs][dmat_idx_tuple]

• user_ctx (void*) – user-defined callback function context

• num_exp (const QInt) – number of the expectation values, equals to the prod-
uct of the size of perturbations on the XC functional (specified by the perturba-
tion tuple xc_pert_tuple) and the number of different frequency configurations
num_freq_configs

Var val_exp the expectation values to be added, size is 2 × num_exp, and arranged as
[num_freq_configs][xc_pert_tuple][2]

Vartype val_exp QReal*

Return type void

void get_zero_oper_contrib(oper_num_pert, oper_pert_labels, oper_pert_orders, user_ctx, size_pert,
val_oper)

User-specified callback function to calculate contributions from the zero-electron operator, the last argument for
the function OpenRSPAddZeroOper().

Parameters

• oper_num_pert (const QInt) – number of perturbations on the zero-electron opera-
tor

• oper_pert_labels (const QcPertInt*) – labels of perturbations on the zero-
electron operator, size is oper_num_pert

• oper_pert_orders (const QInt*) – orders of perturbations on the zero-electron
operator, size is oper_num_pert

• user_ctx (void*) – user-defined callback function context

• size_pert (const QInt) – size of the perturbations on the zero-electron operator

Var val_oper contributions from the zero-electron operator to be added, arranged as
[size_pert][2]

Vartype val_oper QReal*

Return type void

void get_linear_rsp_solution(num_pert, num_comps, num_freq_sums, freq_sums, RHS_mat,
user_ctx, rsp_param)

User-specified callback function of linear response equation solver, the last argument for the function
OpenRSPSetLinearRSPSolver().

Parameters

• num_pert (const QInt) – number of different perturbations on the right hand side of
the linear response equation

• num_comps (const QInt*) – number of components of each perturbation, size is
num_pert

• num_freq_sums (const QInt*) – for each perturbation, number of complex fre-
quency sums on the left hand side of the linear response equation, size is num_pert

38 Chapter 10. Add OpenRSP to a quantum chemistry program



OpenRSP Documentation, Release 1.0.0

• freq_sums (const QReal*) – the complex frequency sums on the left hand side of
the linear response equation, size is twice of the sum of num_freq_sums, the real and
imaginary parts of each frequency sum are consecutive in memory

• RHS_mat (QcMat*[]) – RHS matrices, size is the dot product of num_comps and
num_freq_sums, and index of num_freq_sums runs faster in memory

• user_ctx (void*) – user-defined callback function context

Var rsp_param solved response parameters, size is the dot product of num_comps and
num_freq_sums, and index of num_freq_sums runs faster in memory

Vartype rsp_param QcMat*[]

Return type void

10.4.2 OpenRSP Callback Subroutines (Fortran version)

The callback subroutines of Fortran codes take almost the exact arguments as the callback functions of C codes.
One difference is the type convention between C and Fortran, which has been discussed in Secion subsubsec-
tion_fortran_convention. Moreover, the pointers of basic types (integer and real numbers) in the C codes should
be converted to corresponding array in Fortran. The array of QcMat pointers should be converted to an array
of type(QcMat) in Fortran. Last, the user-defined callback function/subroutine context should be replaced by
type(C_PTR).

We will develop Fortran unit testing in next release. For the time being, interested users can refer to LSDalton for
examples of Fortran callback subroutines.

10.5 Limitations or Known Problems

• “T matrix contributions” - i.e. contributions from the perturbed “half-time-differentiated” overlap matrix - are
not yet supported in the newest version of the code. These contributions are only nonzero for perturbations that
both a) affect the basis set and b) have frequencies other than zero. The most relevant such kind of perturbation
is the magnetic dipole perturbations using London atomic orbitals. Properties consisting of only other kinds of
perturbations - such as geometric displacement of the nuclei or electric dipole perturbations - are unaffected by
the lack of T matrix contributions.

• Currently we use QcPertInt (defined as QInt type in include/RSPPerturbation.h, and src/
fortran/RSPPertBasicTypes.F90 for Fortran APIs) to reprenset several perturbation labels (see sub-
section_notations_and_conventions), in which one label is described by OPENRSP_PERT_LABEL_BIT bits
(that can be modified during the step ccmake, see subsection_compile).

For the time being, we do not suggest that users change the type of QcPertInt, because other integer types
are not supported by OpenRSP yet.

• The current implementation of residues is just tested for electric field perturbations and single residues.

10.6 Unit Testing

After successfully building OpenRSP (see subsection_compile), we recommend users perform the unit testing of
OpenRSP.

If OPENRSP_TEST_EXECUTABLE is enabled, you will have an executable openrsp_c_test after successfully
building OpenRSP. Run this executable for unit testing.

10.5. Limitations or Known Problems 39



OpenRSP Documentation, Release 1.0.0

If OPENRSP_TEST_EXECUTABLE is disabled, you will need to call the function

QErrorCode OpenRSPTest(FILE *fp_log)

to perform the unit testing.

40 Chapter 10. Add OpenRSP to a quantum chemistry program



CHAPTER 11

Get involved with development

We welcome your participation if you want to become involved with the development of OpenRSP! Our code is hosted
on GitHub and is publicly available under the LGPL v2.1 software license. You may freely obtain and use this code
provided that you do not violate this software license, but us present Authors would of course would of course also
like to get in touch with you.

We are still working on a documentation of the OpenRSP code and API, and this will be made available on this website
when ready. A style guide and contribution guidelines are also under development.

41

https://github.com/openrsp/openrsp
https://github.com/openrsp/openrsp


OpenRSP Documentation, Release 1.0.0

42 Chapter 11. Get involved with development



CHAPTER 12

How Sphinx works

These pages are generated using Sphinx. If you want to find out more about RST/Sphinx, please read http://sphinx-doc.
org/rest.html. RST is a subset of Sphinx. Sphinx is RST with some extensions.

12.1 How to modify the website

The website is generated from RST sources under doc/. Once a pull request is merged, a post-receive hook updates
the documentation on https://openrsp.readthedocs.io. This typically takes less than a minute. Our main page http:
//openrsp.org redirects to https://openrsp.readthedocs.io.

12.2 How to locally test changes

You don’t have to push to see and test your changes. You can test them locally. For this install the Python packages
sphinx and sphinx_rtd_theme. Then build the pages with:

$ sphinx-build doc/ _build

Then point your browser to _build/html/index.html. The style is not the same but the content is what you
would see after a successful pull request merge.

43

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/rest.html
https://openrsp.readthedocs.io
http://openrsp.org
http://openrsp.org
https://openrsp.readthedocs.io


OpenRSP Documentation, Release 1.0.0

44 Chapter 12. How Sphinx works



CHAPTER 13

Tentative Rules for Developers

13.1 Short-version

1. First analyze the problem, then design the code (data and algorithm structures), prepare test suite. Last, write
the code.

2. Make everything as simple as possible.

3. Do your best to prepare a readable document.

13.2 Long-version

1. First of all, please write explicitly what you would like to implement in doc! Describe your idea using
formulas and/or words. Then translate them into algorithms and data structure. Please do write what ob-
jects/types/variables you will define and their corresponding public and private functions (including detailed
descriptions of the input and output arguments). It would be better if you could write down the framework of
your implementation using figures. Please also write down the limitations or risks of your code, for instance,
does it stable or have some numerical error? If yes, how to prevent or how to know if the results are reasonable?

In this stage, you may refer to some rules in object-oriented programming (OOP). For instance, when you define
a module/class etc.:

1. it should be open for extension but closed for modification (Open Closed Principle, OCP),

2. subclasses should be substitutable for their base classes (Liskov Substitution Principle, LSP),

3. depend upon abstractions, do not depend upon concretions (Dependency Inversion Principle, DIP),

4. many client specific interfaces are better than one general purpose interface (Interface Segregation Princi-
ple, ISP),

5. In other words: low coupling, high cohesion, open for extension, and closed for changes (from “Develop-
ing Chemical Information Systems: An Object-Oriented Approach Using Enterprise Java”, Fan Li).

2. Write the codes. During this stage, we would be happy if you could:

45



OpenRSP Documentation, Release 1.0.0

1. write comments (in english, one line for each 10-20 line of codes at least),

2. try to use descriptive names for your classes and methods,

3. do your best to avoid global variables,

4. try to re-use code and try to use libraries,

3. This is very important, and should be considered and implemented during the aforementioned two steps:

Always provide a test suite for each function/subroutine/module etc., unless you are 100% sure what you did is
right. Integration testing will also be required in some cases.

46 Chapter 13. Tentative Rules for Developers



Bibliography

[Morgan2018] Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Struc-
ture and Molecular Force Field of Formaldehyde, Morgan, W. James; Matthews, Devin A.; Ringholm,
Magnus; et al. J. Chem. Theory Comput. 14 (3), 1333 (2018)

[DiRemigio2017] Open-ended formulation of self-consistent field response theory with the polarizable continuum
model for solvation Di Remigio, Roberto; Beerepoot, Maarten T. P.; Cornaton, Yann; et al. PCCP 19 (1),
366 (2017)

[Anelli2017] Gauge-origin independent calculations of electric-field-induced second-harmonic generation circular
intensity difference using London atomic orbitals Anelli, Marco; Ringholm, Magnus; Ruud, Kenneth
Mol. Phys. 115 (1-2), 241 (2017)

[Steindal2016] Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular
systems Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T. P.; Ringholm, Magnus; et al. PCCP 18 (40),
28339 (2016)

[Cornaton2016-2] Complete analytic anharmonic hyper-Raman scattering spectra Cornaton, Yann; Ringholm, Mag-
nus; Ruud, Kenneth PCCP 18 (32), 22331 (2016)

[Cornaton2016] Analytic calculations of anharmonic infrared and Raman vibrational spectra Cornaton, Yann;
Ringholm, Magnus; Louant, Orian; et al. PCCP 18 (5) 4201 (2016)

[Friese2015-2] Open-Ended Recursive Calculation of Single Residues of Response Functions for Perturbation-
Dependent Basis Sets Friese, Daniel H.; Ringholm, Magnus; Gao, Bin; et al. J. Chem. Theory Comput.
11 (10), 4814 (2015)

[Friese2015] Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements
Friese, Daniel H.; Beerepoot, Maarten T. P.; Ringholm, Magnus; et al. J. Chem. Theory Comput. 11
(3), 1129 (2015)

[Ringholm2014-3] Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability
gradients Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; et al. J. Chem. Phys. 141 (13), 134107
(2014)

[Ringholm2014-2] Analytic cubic and quartic force fields using density-functional theory Ringholm, Magnus; Jons-
son, Dan; Bast, Radovan; et al. J. Chem. Phys. 140 (3), 034103 (2014)

[Gao2014] Analytic Density Functional Theory Calculations of Pure Vibrational Hyperpolarizabilities: The First
Dipole Hyperpolarizability of Retinal and Related Molecules Gao, Bin; Ringholm, Magnus; Bast,
Radovan; et al. J. Phys. Chem. A 118 (4), 748 (2014)

47



OpenRSP Documentation, Release 1.0.0

[Ringholm2014] A General, Recursive, and Open-Ended Response Code Ringholm, Magnus; Jonsson, Dan; Ruud,
Kenneth J. Comput. Chem. 35 (8), 622 (2014)

[Thorvaldsen2008] A density matrix-based quasienergy formulation of the Kohn–Sham density functional response
theory using perturbation- and time-dependent basis sets Thorvaldsen, Andreas J.; Ruud, Kenneth; Kris-
tensen, Kasper; et al. J. Chem. Phys. 129 (21), 214108 (2008)

48 Bibliography



Index

G
get_linear_rsp_solution (C function), 38
get_one_oper_exp (C function), 34
get_one_oper_mat (C function), 34
get_overlap_exp (C function), 33
get_overlap_mat (C function), 32
get_pert_concatenation (C function), 32
get_two_oper_exp (C function), 35
get_two_oper_mat (C function), 35
get_xc_fun_exp (C function), 37
get_xc_fun_mat (C function), 36
get_zero_oper_contrib (C function), 38

O
OpenRSPAddOneOper (C function), 26
OpenRSPAddTwoOper (C function), 26
OpenRSPAddXCFun (C function), 27
OpenRSPAddZeroOper (C function), 27
OpenRSPAssemble (C function), 28
OpenRSPCreate (C function), 24
OpenRSPDestroy (C function), 30
OpenRSPGetResidue (C function), 29
OpenRSPGetRSPFun (C function), 28
OpenRSPSetLinearRSPSolver (C function), 24
OpenRSPSetOverlap (C function), 25
OpenRSPSetPerturbations (C function), 25
OpenRSPTest (C function), 40
OpenRSPWrite (C function), 28

49


	What is OpenRSP?
	Authors
	Citation guide
	History of the project
	Version history and changelog
	Programs where OpenRSP is used
	Papers involving OpenRSP
	Theoretical background
	Get and run OpenRSP
	Add OpenRSP to a quantum chemistry program
	Get involved with development
	How Sphinx works
	Tentative Rules for Developers
	Bibliography
	Index

